
AMQP

A General-Purpose Middleware Standard

AMQP: A General-Purpose Middleware Standard

Copyright Notice

© Copyright Cisco Systems, Credit Suisse, Deutsche Börse Systems, Envoy Technologies, Inc.,Goldman Sachs, IONA Technologies PLC, iMatix
Corporation sprl.,JPMorgan Chase Bank Inc. N.A, Novell, Rabbit Technologies Ltd., Red Hat, Inc., TWIST Process Innovations ltd, and 29West
Inc. 2006. All rights reserved.

License

Cisco Systems, Credit Suisse, Deutsche Börse Systems, Envoy Technologies, Inc.,Goldman Sachs, IONA Technologies PLC, iMatix Corporation
sprl.,JPMorgan Chase Bank Inc. N.A, Novell, Rabbit Technologies Ltd., Red Hat, Inc., TWIST Process Innovations ltd, and 29West Inc.
(collectively, the "Authors") each hereby grants to you a worldwide, perpetual, royalty-free, nontransferable, nonexclusive license to (i) copy,
display, distribute and implement the Advanced Messaging Queue Protocol ("AMQP") Specification and (ii) the Licensed Claims that are held by
the Authors, all for the purpose of implementing the Advanced Messaging Queue Protocol Specification. Your license and any rights under this
Agreement will terminate immediately without notice from any Author if you bring any claim, suit, demand, or action related to the Advanced
Messaging Queue Protocol Specification against any Author. Upon termination, you shall destroy all copies of the Advanced Messaging Queue
Protocol Specification in your possession or control.

As used hereunder, "Licensed Claims" means those claims of a patent or patent application, throughout the world, excluding design patents and
design registrations, owned or controlled, or that can be sublicensed without fee and in compliance with the requirements of this Agreement, by an
Author or its affiliates now or at any future time and which would necessarily be infringed by implementation of the Advanced Messaging Queue
Protocol Specification. A claim is necessarily infringed hereunder only when it is not possible to avoid infringing it because there is no plausible
non-infringing alternative for implementing the required portions of the Advanced Messaging Queue Protocol Specification. Notwithstanding the
foregoing, Licensed Claims shall not include any claims other than as set forth above even if contained in the same patent as Licensed Claims;
or that read solely on any implementations of any portion of the Advanced Messaging Queue Protocol Specification that are not required by the
Advanced Messaging Queue Protocol Specification, or that, if licensed, would require a payment of royalties by the licensor to unaffiliated third
parties. Moreover, Licensed Claims shall not include (i) any enabling technologies that may be necessary to make or use any Licensed Product but
are not themselves expressly set forth in the Advanced Messaging Queue Protocol Specification (e.g., semiconductor manufacturing technology,
compiler technology, object oriented technology, networking technology, operating system technology, and the like); or (ii) the implementation
of other published standards developed elsewhere and merely referred to in the body of the Advanced Messaging Queue Protocol Specification,
or (iii) any Licensed Product and any combinations thereof the purpose or function of which is not required for compliance with the Advanced
Messaging Queue Protocol Specification. For purposes of this definition, the Advanced Messaging Queue Protocol Specification shall be deemed
to include both architectural and interconnection requirements essential for interoperability and may also include supporting source code artifacts
where such architectural, interconnection requirements and source code artifacts are expressly identified as being required or documentation to
achieve compliance with the Advanced Messaging Queue Protocol Specification.

As used hereunder, "Licensed Products" means only those specific portions of products (hardware, software or combinations thereof) that implement
and are compliant with all relevant portions of the Advanced Messaging Queue Protocol Specification.

The following disclaimers, which you hereby also acknowledge as to any use you may make of the Advanced Messaging Queue Protocol
Specification:

THE ADVANCED MESSAGING QUEUE PROTOCOL SPECIFICATION IS PROVIDED "AS IS," AND THE AUTHORS MAKE
NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NON-INFRINGEMENT, OR TITLE; THAT THE CONTENTS OF
THE ADVANCED MESSAGING QUEUE PROTOCOL SPECIFICATION ARE SUITABLE FOR ANY PURPOSE; NOR THAT THE
IMPLEMENTATION OF THE ADVANCED MESSAGING QUEUE PROTOCOL SPECIFICATION WILL NOT INFRINGE ANY THIRD
PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS.

THE AUTHORS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES
ARISING OUT OF OR RELATING TO ANY USE, IMPLEMENTATION OR DISTRIBUTION OF THE ADVANCED MESSAGING QUEUE
PROTOCOL SPECIFICATION.

The name and trademarks of the Authors may NOT be used in any manner, including advertising or publicity pertaining to the Advanced Messaging
Queue Protocol Specification or its contents without specific, written prior permission. Title to copyright in the Advanced Messaging Queue Protocol
Specification will at all times remain with the Authors.

No other rights are granted by implication, estoppel or otherwise.

Upon termination of your license or rights under this Agreement, you shall destroy all copies of the Advanced Messaging Queue Protocol
Specification in your possession or control.

Status of this Document

"JPMorgan", "JPMorgan Chase", "Chase", the JPMorgan Chase logo and the Octagon Symbol are trademarks of JPMorgan Chase & Co.

IMATIX and the iMatix logo are trademarks of iMatix Corporation sprl.

IONA, IONA Technologies, and the IONA logos are trademarks of IONA Technologies PLC and/or its subsidiaries.

LINUX is a trademark of Linus Torvalds.

RED HAT and JBOSS are registered trademarks of Red Hat, Inc. in the US and other countries.

Java, all Java-based trademarks and OpenOffice.org are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

RabbitMQ™ is a Trademark of Rabbit Technologies Ltd.

Other company, product, or service names may be trademarks or service marks of others.

v

Table of Contents
Credits ... xi

1. Technical Contributors .. xi
2. Reviewers ... xi

I. Concepts .. 1
1. Overview ... 4

1.1. Goals of This Document .. 4
1.2. Patents .. 4
1.3. Summary .. 4

1.3.1. What is AMQP? .. 4
1.3.2. Why AMQP? .. 4
1.3.3. Scope of AMQP .. 4
1.3.4. The Advanced Message Queuing Protocol .. 5
1.3.5. Functional Scope ... 7

1.4. Organization of This Document .. 7
1.5. Conventions .. 7

1.5.1. Definitions .. 7
1.5.2. Version Numbering .. 8
1.5.3. Technical Terminology ... 8

2. The AMQP Model .. 11
2.1. Introduction to The AMQP Model ... 11

2.1.1. The Message Queue ... 11
2.1.2. The Exchange .. 12
2.1.3. The Routing Key ... 12
2.1.4. Analogy to Email ... 12
2.1.5. Message Flow .. 13

2.2. Virtual Hosts ... 15
2.3. Exchanges ... 15

2.3.1. Types of Exchange ... 16
2.3.2. Exchange Life-cycle ... 18

2.4. Message Queues ... 18
2.4.1. Message Queue Properties ... 19
2.4.2. Queue Life-cycles .. 19

2.5. Bindings .. 19
2.5.1. Constructing a Shared Queue ... 20
2.5.2. Constructing a Reply Queue ... 20
2.5.3. Constructing a Pub-Sub Subscription Queue .. 21

2.6. Messages ... 22
2.6.1. Flow Control ... 22
2.6.2. Transfer of Responsibility .. 22

2.7. Subscriptions ... 22
2.8. Transactions ... 22
2.9. Distributed Transactions ... 23

2.9.1. Distributed Transaction Scenario ... 24
3. Sessions ... 25

3.1. Session Definition ... 25
3.1.1. Session Lifetime .. 25
3.1.2. A Transport For Commands ... 25
3.1.3. Session as a Layer .. 25

3.2. Session Functionality ... 26
3.2.1. Sequential Identification .. 26
3.2.2. Confirmation ... 26

AMQP

vi

3.2.3. Completion ... 26
3.2.4. Replay and Recovery .. 27

3.3. Transport requirements .. 27
3.4. Commands and Controls .. 27

3.4.1. Commands .. 27
3.4.2. Controls .. 28

3.5. Session Lifecycle .. 28
3.5.1. Attachment .. 29
3.5.2. Session layer state .. 29
3.5.3. Reliability ... 29
3.5.4. Replay .. 29

3.6. Using Session Controls .. 30
3.6.1. Attaching to a "new" session .. 30
3.6.2. Attempting to re-attach to an existing session .. 31
3.6.3. Detaching cleanly ... 32
3.6.4. Closing ... 33

II. Specification .. 34
4. Transport ... 40

4.1. IANA Port Number ... 40
4.2. Protocol Header .. 40
4.3. Version Negotiation .. 40
4.4. Framing .. 41

4.4.1. Assemblies, Segments, and Frames .. 41
4.4.2. Channels and Tracks ... 42
4.4.3. Frame Format .. 43

4.5. SCTP .. 44
5. Formal Notation .. 45

5.1. Docs and Rules .. 45
5.2. Types ... 46
5.3. Structs .. 47
5.4. Domains .. 50

5.4.1. Enums .. 51
5.5. Constants .. 51
5.6. Classes .. 52

5.6.1. Roles ... 52
5.7. Controls .. 53

5.7.1. Responses ... 54
5.8. Commands .. 54

5.8.1. Results ... 55
5.8.2. Exceptions .. 55

5.9. Segments ... 56
5.9.1. Header Segment ... 56
5.9.2. Body Segment ... 57

6. Constants ... 58
7. Types .. 59

7.1. Fixed width types ... 59
7.1.1. bin8 ... 59
7.1.2. int8 .. 60
7.1.3. uint8 .. 61
7.1.4. char ... 62
7.1.5. boolean ... 63
7.1.6. bin16 ... 64
7.1.7. int16 .. 65
7.1.8. uint16 ... 66

AMQP

vii

7.1.9. bin32 ... 67
7.1.10. int32 ... 68
7.1.11. uint32 ... 69
7.1.12. float ... 70
7.1.13. char-utf32 .. 71
7.1.14. sequence-no ... 72
7.1.15. bin64 .. 73
7.1.16. int64 ... 74
7.1.17. uint64 ... 75
7.1.18. double .. 76
7.1.19. datetime .. 77
7.1.20. bin128 .. 78
7.1.21. uuid ... 79
7.1.22. bin256 .. 80
7.1.23. bin512 .. 81
7.1.24. bin1024 ... 82
7.1.25. bin40 .. 83
7.1.26. dec32 ... 84
7.1.27. bin72 .. 85
7.1.28. dec64 ... 86
7.1.29. void ... 87
7.1.30. bit .. 88

7.2. Variable width types ... 90
7.2.1. vbin8 ... 90
7.2.2. str8-latin ... 91
7.2.3. str8 .. 92
7.2.4. str8-utf16 .. 93
7.2.5. vbin16 .. 94
7.2.6. str16-latin ... 95
7.2.7. str16 .. 96
7.2.8. str16-utf16 .. 97
7.2.9. byte-ranges .. 98
7.2.10. sequence-set .. 99
7.2.11. vbin32 ... 100
7.2.12. map .. 101
7.2.13. list .. 102
7.2.14. array ... 103
7.2.15. struct32 ... 104

7.3. Mandatory Types .. 106
8. Domains .. 107

8.1. segment-type ... 107
8.2. track .. 107
8.3. str16-array .. 108

9. Control Classes ... 110
9.1. connection .. 110

9.1.1. connection.close-code ... 111
9.1.2. connection.amqp-host-url .. 112
9.1.3. connection.amqp-host-array ... 113
9.1.4. connection.start ... 114
9.1.5. connection.start-ok ... 116
9.1.6. connection.secure .. 117
9.1.7. connection.secure-ok .. 118
9.1.8. connection.tune ... 119
9.1.9. connection.tune-ok ... 120

AMQP

viii

9.1.10. connection.open ... 122
9.1.11. connection.open-ok .. 123
9.1.12. connection.redirect ... 124
9.1.13. connection.heartbeat ... 125
9.1.14. connection.close .. 126
9.1.15. connection.close-ok .. 127

9.2. session ... 129
9.2.1. Rules .. 130
9.2.2. session.header ... 130
9.2.3. session.command-fragment .. 131
9.2.4. session.name ... 132
9.2.5. session.detach-code .. 133
9.2.6. session.commands .. 134
9.2.7. session.command-fragments ... 135
9.2.8. session.attach .. 136
9.2.9. session.attached ... 137
9.2.10. session.detach .. 138
9.2.11. session.detached .. 139
9.2.12. session.request-timeout .. 140
9.2.13. session.timeout .. 141
9.2.14. session.command-point ... 142
9.2.15. session.expected .. 143
9.2.16. session.confirmed ... 144
9.2.17. session.completed .. 145
9.2.18. session.known-completed .. 146
9.2.19. session.flush .. 147
9.2.20. session.gap ... 148

10. Command Classes .. 150
10.1. execution .. 150

10.1.1. execution.error-code ... 150
10.1.2. execution.sync ... 151
10.1.3. execution.result .. 152
10.1.4. execution.exception .. 153

10.2. message .. 155
10.2.1. Rules .. 157
10.2.2. message.delivery-properties .. 158
10.2.3. message.fragment-properties .. 160
10.2.4. message.reply-to .. 161
10.2.5. message.message-properties ... 162
10.2.6. message.destination .. 164
10.2.7. message.accept-mode .. 165
10.2.8. message.acquire-mode .. 166
10.2.9. message.reject-code .. 167
10.2.10. message.resume-id .. 168
10.2.11. message.delivery-mode .. 169
10.2.12. message.delivery-priority ... 170
10.2.13. message.flow-mode .. 171
10.2.14. message.credit-unit ... 172
10.2.15. message.transfer ... 173
10.2.16. message.accept .. 175
10.2.17. message.reject .. 176
10.2.18. message.release .. 177
10.2.19. message.acquire ... 178
10.2.20. message.resume ... 179

AMQP

ix

10.2.21. message.subscribe .. 180
10.2.22. message.cancel .. 182
10.2.23. message.set-flow-mode .. 183
10.2.24. message.flow ... 184
10.2.25. message.flush .. 185
10.2.26. message.stop ... 186

10.3. tx .. 188
10.3.1. Rules .. 188
10.3.2. tx.select .. 188
10.3.3. tx.commit ... 189
10.3.4. tx.rollback .. 190

10.4. dtx ... 192
10.4.1. Rules .. 193
10.4.2. dtx.xa-result .. 193
10.4.3. dtx.xid ... 194
10.4.4. dtx.xa-status .. 195
10.4.5. dtx.select .. 196
10.4.6. dtx.start .. 197
10.4.7. dtx.end ... 199
10.4.8. dtx.commit ... 201
10.4.9. dtx.forget .. 203
10.4.10. dtx.get-timeout ... 204
10.4.11. dtx.prepare .. 205
10.4.12. dtx.recover .. 207
10.4.13. dtx.rollback ... 208
10.4.14. dtx.set-timeout ... 210

10.5. exchange ... 212
10.5.1. Rules .. 212
10.5.2. exchange.name .. 213
10.5.3. exchange.declare .. 214
10.5.4. exchange.delete ... 217
10.5.5. exchange.query .. 218
10.5.6. exchange.bind ... 219
10.5.7. exchange.unbind .. 222
10.5.8. exchange.bound ... 223

10.6. queue ... 226
10.6.1. Rules .. 226
10.6.2. queue.name ... 226
10.6.3. queue.declare .. 227
10.6.4. queue.delete .. 230
10.6.5. queue.purge .. 231
10.6.6. queue.query .. 232

10.7. file ... 234
10.7.1. Rules .. 235
10.7.2. file.file-properties ... 235
10.7.3. file.return-code .. 236
10.7.4. file.qos ... 237
10.7.5. file.qos-ok .. 238
10.7.6. file.consume .. 239
10.7.7. file.consume-ok ... 241
10.7.8. file.cancel ... 242
10.7.9. file.open ... 243
10.7.10. file.open-ok ... 244
10.7.11. file.stage ... 245

AMQP

x

10.7.12. file.publish .. 246
10.7.13. file.return .. 248
10.7.14. file.deliver ... 249
10.7.15. file.ack ... 250
10.7.16. file.reject .. 251

10.8. stream .. 253
10.8.1. Rules .. 254
10.8.2. stream.stream-properties .. 254
10.8.3. stream.return-code .. 255
10.8.4. stream.qos .. 256
10.8.5. stream.qos-ok .. 257
10.8.6. stream.consume ... 258
10.8.7. stream.consume-ok ... 260
10.8.8. stream.cancel ... 261
10.8.9. stream.publish ... 262
10.8.10. stream.return ... 264
10.8.11. stream.deliver .. 265

11. The Model .. 267
11.1. Exchanges .. 267

11.1.1. Mandatory Exchange Types .. 267
11.1.2. Optional Exchange Types ... 268
11.1.3. System Exchanges ... 270
11.1.4. Implementation-defined Exchange Types ... 271
11.1.5. Exchange Naming ... 271

11.2. Queues .. 271
11.2.1. queue_naming .. 271

12. Protocol Grammar .. 272
12.1. Augmented BNF Rules ... 272
12.2. Grammar .. 272

A. Conformance Tests ... 278
A.1. Introduction ... 278

B. Implementation Guide .. 279
B.1. AMQP Client Architecture ... 279

xi

Credits
1. Technical Contributors

Sanjay Aiyagari Cisco Systems Matthew Arrott Twist Process Innovations
Rajith Attapattu Red Hat Mark Atwell JPMorgan Chase
Jason Brome Envoy Technologies Alan Conway Red Hat
Tejeswar Das IONA Technologies Tony Garnock-Jones Rabbit Technologies
Robert Godfrey JPMorgan Chase Robert Greig JPMorgan Chase
Pieter Hintjens iMatix Corporation John O'Hara JPMorgan Chase
Navin Kamath IONA Technologies Hsuan-Chung Lee Cisco Systems
Matthias Radestock Rabbit Technologies Alexis Richardson Rabbit Technologies
Martin Ritchie JPMorgan Chase Shahrokh Sadjadi Cisco Systems
Rafael Schloming Red Hat Steven Shaw JPMorgan Chase
Gordon Sim Red Hat Arnaud Simon Red Hat
Martin Sustrik iMatix Corporation Carl Trieloff Red Hat
Kim van der Riet Red Hat Steve Vinoski IONA Technologies

We also wish to acknowledge the technical contributions of a number of individuals from Credit Suisse.

2. Reviewers

Kayshav Dattatri Cisco Systems Aidan Skinner JPMorgan Chase
Rupert Smith JPMorgan Chase Subbu Srinivasan Cisco Systems
Andrew Stitcher Red Hat

Part I. Concepts

2

Table of Contents
1. Overview ... 4

1.1. Goals of This Document .. 4
1.2. Patents .. 4
1.3. Summary .. 4

1.3.1. What is AMQP? .. 4
1.3.2. Why AMQP? .. 4
1.3.3. Scope of AMQP .. 4
1.3.4. The Advanced Message Queuing Protocol .. 5
1.3.5. Functional Scope ... 7

1.4. Organization of This Document .. 7
1.5. Conventions .. 7

1.5.1. Definitions .. 7
1.5.2. Version Numbering .. 8
1.5.3. Technical Terminology ... 8

2. The AMQP Model .. 11
2.1. Introduction to The AMQP Model ... 11

2.1.1. The Message Queue ... 11
2.1.2. The Exchange .. 12
2.1.3. The Routing Key ... 12
2.1.4. Analogy to Email ... 12
2.1.5. Message Flow ... 13

2.2. Virtual Hosts ... 15
2.3. Exchanges ... 15

2.3.1. Types of Exchange ... 16
2.3.2. Exchange Life-cycle ... 18

2.4. Message Queues ... 18
2.4.1. Message Queue Properties ... 19
2.4.2. Queue Life-cycles .. 19

2.5. Bindings .. 19
2.5.1. Constructing a Shared Queue ... 20
2.5.2. Constructing a Reply Queue ... 20
2.5.3. Constructing a Pub-Sub Subscription Queue .. 21

2.6. Messages ... 22
2.6.1. Flow Control ... 22
2.6.2. Transfer of Responsibility .. 22

2.7. Subscriptions ... 22
2.8. Transactions ... 22
2.9. Distributed Transactions ... 23

2.9.1. Distributed Transaction Scenario ... 24
3. Sessions ... 25

3.1. Session Definition ... 25
3.1.1. Session Lifetime .. 25
3.1.2. A Transport For Commands ... 25
3.1.3. Session as a Layer .. 25

3.2. Session Functionality ... 26
3.2.1. Sequential Identification .. 26
3.2.2. Confirmation ... 26
3.2.3. Completion ... 26
3.2.4. Replay and Recovery .. 27

3.3. Transport requirements .. 27
3.4. Commands and Controls .. 27

Concepts

3

3.4.1. Commands .. 27
3.4.2. Controls .. 28

3.5. Session Lifecycle .. 28
3.5.1. Attachment .. 29
3.5.2. Session layer state .. 29
3.5.3. Reliability ... 29
3.5.4. Replay .. 29

3.6. Using Session Controls .. 30
3.6.1. Attaching to a "new" session .. 30
3.6.2. Attempting to re-attach to an existing session .. 31
3.6.3. Detaching cleanly ... 32
3.6.4. Closing ... 33

4

1. Overview
1.1. Goals of This Document

This document defines a networking protocol, the Advanced Message Queuing Protocol (AMQP), which enables
conforming client applications to communicate with conforming messaging middleware services. To fully achieve this
interoperability we also define the normative behavior of the messaging middleware service.

We address a technical audience with some experience in the domain, and we provide sufficient specifications and
guidelines that a suitably skilled engineer can construct conforming solutions in any modern programming language
or hardware platform.

1.2. Patents

A conscious design objective of AMQP was to base it on concepts taken from existing, unencumbered, widely
implemented standards such those published by the Internet Engineering Task Force (IETF) or the World Wide Web
Consortium (W3C).

Consequently, we believe it is possible to create AMQP implementations using only well known techniques such as
those found in existing Open Source networking and email routing software or which are otherwise well-known to
technology experts.

1.3. Summary

1.3.1. What is AMQP?

The Advanced Message Queuing Protocol (AMQP) enables full functional interoperability between conforming clients
and messaging middleware servers (also called "brokers").

1.3.2. Why AMQP?

Our goal is to enable the development and industry-wide use of standardized messaging middleware technology that
will lower the cost of enterprise and systems integration and provide industrial-grade integration services to a broad
audience.

It is our aim that, through AMQP, messaging middleware capabilities may ultimately be driven into the network
itself, and that through the pervasive availability of messaging middleware, new kinds of useful applications may be
developed.

1.3.3. Scope of AMQP

To enable complete interoperability for messaging middleware requires that both the networking protocol and the
semantics of the broker services are sufficiently specified.

AMQP, therefore, defines both the network protocol and the broker services through:

1. A defined set of messaging capabilities called the "Advanced Message Queuing Protocol Model" (AMQP Model).
The AMQP Model consists of a set of components that route and store messages within the broker, plus a set of
rules for wiring these components together.

2. A network wire-level protocol, AMQP, that lets client applications talk to the broker and interact with the AMQP
Model it implements.

Overview

5

One can partially imply the semantics of the server from the AMQP protocol specifications but we believe that an
explicit description of these semantics helps the understanding of the protocol.

1.3.4. The Advanced Message Queuing Protocol

1.3.4.1. The AMQP Model

We define the server's semantics explicitly, since interoperability demands that these semantics be the same in any
given server implementation.

The AMQP Model thus specifies a modular set of components and standard rules for connecting these.

There are three main types of component, which are connected into processing chains in the server to create the desired
functionality:

1. The "exchange" receives messages from publisher applications and routes these to "message queues", based on
arbitrary criteria, usually message properties or content.

2. The "message queue" stores messages until they can be safely processed by a consuming client application (or
multiple applications).

3. The "binding" defines the relationship between a message queue and an exchange and provides the message routing
criteria.

Using this model we can emulate the classic middleware concepts of store-and-forward queues and topic subscriptions
trivially.

In very gross terms, an AMQP server is analogous to an email server, with each exchange acting as a message transfer
agent, and each message queue as a mailbox. The bindings define the routing tables in each transfer agent. Publishers
send messages to individual transfer agents, which then route the messages into mailboxes. Consumers take messages
from mailboxes.

In many pre-AMQP middleware systems, by contrast, publishers send messages directly to individual mailboxes (in
the case of store-and-forward queues), or to mailing lists (in the case of topic subscriptions).

The difference is that when the rules connecting message queues to exchanges are under control of the architect (rather
than embedded in code), it becomes possible to do interesting things, such as define a rule that says, "place a copy of
all messages containing such-and-such a header into this message queue".

The AMQP model was conceived with the following goals:

1. To support the semantics required by the financial services industry.

2. To provide the levels of performance required by the financial services industry.

3. To be easily extended for new kinds of message routing and queuing.

4. To permit the server's specific semantics to be programmed by the application, via the protocol.

5. To be flexible yet simple.

1.3.4.2. The AMQP Protocol

The AMQP protocol is a binary protocol with modern features: it is multi-channel, negotiated, asynchronous, secure,
portable, neutral, and efficient.

AMQP is usefully split into three layers:

Overview

6

 +------------------------Model-------------------------+
 | |
 | Messages Queues Exchanges |
 | |
 | Access Control Transactions |
 | |
 | Data Types |
 | |
 +--+

 +-----------------------Session------------------------+
 | |
 | Commands Controls Exceptions |
 | |
 | Confirmation Completion |
 | |
 | Replay Synchronization |
 | |
 +--+

 +----------------------Transport-----------------------+
 | |
 | Data Encoding Framing Failure Detection |
 | |
 | Multiplexing |
 | |
 +--+

The model layer defines a set of commands (grouped into logical classes of functionality) that do useful work on
behalf of the application.

The session layer provides reliable transport of commands from application to server and back with replay,
synchronization, and error handling.

The transport layer provides framing, channel multiplexing, failure detection, and data representation.

One could replace the transport layer with arbitrary transports without changing the application-visible functionality
of the protocol. One could also use the same session layer for different high-level protocols.

The design of the AMQP Model was driven by these requirements:

1. To guarantee interoperability between conforming implementations.

2. To provide explicit control over the quality of service.

3. To support any middleware domain: messaging, file transfer, streaming, RPC, etc.

4. To accommodate existing open messaging API standards (for example, Sun's JMS).

5. To be consistent and explicit in naming.

6. To allow complete configuration of server wiring via the protocol.

7. To use a command notation that maps easily into application-level API's.

8. To be clear, so each operation does exactly one thing.

The design of the AMQP transport layer was driven by these main requirements, in no particular order:

1. To be compact, using a binary encoding that packs and unpacks rapidly.

2. To handle messages of any size without significant limit.

Overview

7

3. To permit zero-copy data transfer (e.g. remote DMA).

4. To carry multiple sessions across a single connection.

5. To allow sessions to survive network failure, server failover, and application recovery.

6. To be long-lived, with no significant in-built limitations.

7. To be asynchronous.

8. To be easily extended to handle new and changed needs.

9. To be forward compatible with future versions.

10. To be repairable, using a strong assertion model.

11. To be neutral with respect to programming languages.

12. To fit a code generation process.

1.3.5. Functional Scope

We support a variety of messaging architectures:

1. Store-and-forward with many writers and one reader

2. Transaction distribution with many writers and many readers

3. Publish-subscribe with many writers and many readers

4. Content-based routing with many writers and many readers

5. Queued file transfer with many writers and many readers

6. Point-to-point connection between two peers

1.4. Organization of This Document

The document is divided into two parts:

1. "Concepts", which provides and introduction to the concepts in AMQP, a narrative introduction to how AMQP
works, and how AMQP may be used.

2. "Specification", in which we define precisely the semantics of every part of the AMQP model layer; the session
layer; and define a wire format for the transmission of AMQP over a network.

1.5. Conventions

1.5.1. Definitions

1. We use the terms MUST, MUST NOT, SHOULD, SHOULD NOT, and MAY as defined by IETF RFC 2119.

2. We use the term "the server" when discussing the specific behavior required of a conforming AMQP server.

3. We use the term "the client" when discussing the specific behavior required of a conforming AMQP client.

Overview

8

4. We use the term "the peer" to mean "the server or the client".

5. All numeric values are decimal unless otherwise indicated.

6. Protocol constants are shown as upper-case names. AMQP implementations SHOULD use these names when
defining and using constants in source code and documentation.

7. Property names, command or control arguments, and frame fields are shown as lower-case names. AMQP
implementations SHOULD use these names consistently in source code and documentation.

1.5.2. Version Numbering

The AMQP version is expressed using two numbers – the major number and the minor number. By convention, the
version is expressed as the major number followed by a dash, followed by the minor number. (For example, 1-3 is
major = 1, minor = 3.)

1. Major and minor numbers may take any value between 0 and 255 inclusive.

2. Minor numbers are incremented with the major version remaining unchanged. When the AMQP working group
decides that a major version is appropriate, the major number is incremented, and the minor number is reset to 0.
Thus, a possible sequence could be 1-2, 1-3, 1-4, 2-0, 2-1...

3. Once the protocol reaches production (major >= 1), minor numbers greater than 9 would be strongly discouraged.
However, prior to production (versions 0-x), this may occur owing to the rapid and frequent revisions of the
protocol.

4. Once the protocol reaches production (major >=1), backwards compatibility between minor versions of the same
major version must be guaranteed by implementers. Conversely, backwards compatibility between minor versions
prior to production is neither guaranteed nor expected.

5. Major version numbers of 99 and above are reserved for internal testing and development purposes.

1.5.3. Technical Terminology

The following terms have special significance within the context of this document:

1. AMQP Model: A logical framework representing the key entities and semantics which must be made available
by an AMQP compliant server implementation, such that the server can be meaningfully manipulated by AMQP
Commands sent from a client in order to achieve the semantics defined in this specification.

2. Connection: A network connection, e.g. a TCP/IP socket connection.

3. Session: A named dialog between peers. Within the context of a Session, exactly-once delivery is guaranteed.

4. Channel: An independent bidirectional stream within a multiplexed connection. The physical transport for a
connected session.

5. Client: The initiator of an AMQP connection or session. AMQP is not symmetrical. Clients produce and consume
messages whereas servers queue and route messages.

6. Server: The process that accepts client connections and implements the AMQP message queuing and routing
functions. Also known as "broker"

7. Peer: Either party in an AMQP dialog. An AMQP connection involves exactly two peers (one is the client, one
is the server)

Overview

9

8. Partner: The term Partner is used as a convenient shorthand for describing the "other" Peer when describing an
interaction between two Peers. For example if we have defined Peer A and Peer B as opposite ends of a given
interaction, then Peer B is Peer A's Partner and Peer A is Peer B's partner.

9. Assembly: An ordered collection of Segments that form a logical unit of work.

10. Segment: An ordered collection of Frames that together form a complete syntactic sub-unit of an Assembly.

11. Frame: The atomic unit of transmission in AMQP. A Frame is an arbitrary fragment of a Segment.

12. Control: A formally defined one-way instruction assumed to be unreliably transported.

13. Command: A formally defined and identified instruction requiring acknowledgement. AMQP attempts to reliably
transport Commands.

14. Exception: A formally defined error condition that may occur during execution of one or more commands.

15. Class: A collection of AMQP commands or controls that deal with a specific type of functionality.

16. Header: A specific type of Segment that describes properties of message data.

17. Body: A specific type of Segment that contains application data. Body segments are entirely opaque - the server
does not examine or modify these in any way.

18. Content: The message data contained within a body segment.

19. Exchange: An entity within the server which receives messages from producer applications and routes these to
message queues within the server.

20. Exchange Type: The classification of an exchange based on routing semantics.

21. Message Queue: A named entity that holds messages until they can be sent to consumer applications.

22. Binding: A relationship that defines routing between a Message Queue and an Exchange.

23. Binding Key: A name for a binding. Some exchange types may use this as a pattern that defines the routing behavior
for the Binding.

24. Routing Key: A message header that an Exchange may use to decide how to route a specific message.

25. Durable: A server resource that survives a server restart.

26. Transient: A server resource that is wiped or reset after a server restart.

27. Persistent: A message that the server holds on reliable disk storage and MUST NOT lose after a server restart.

28. Non-Persistent: A message that the server holds in memory and MAY lose after a server restart.

29. Consumer: A client application that requests messages from a message queue.

30. Producer: A client application that publishes messages to an exchange.

31. Virtual Host: A collection of exchanges, message queues and associated objects. Virtual hosts are independent
server domains that share a common authentication and encryption environment. The client application chooses
a virtual host after logging in to the server.

These terms have no special significance within the context of AMQP:

1. Topic: Usually a means of distributing messages; AMQP implements topics using one or more types of exchange.

Overview

10

2. Service: Usually synonymous with server. The AMQP standard uses "server" to conform with IETF standard
nomenclature and to clarify the roles of each party in the protocol (both sides may be AMQP services).

3. Broker: synonymous with server. The AMQP standard uses the terms "client" and "server" to conform with IETF
standard nomenclature.

11

2. The AMQP Model
2.1. Introduction to The AMQP Model

This section explains the server semantics that must be standardized in order to guarantee interoperability between
AMQP implementations.

This diagram shows the overall AMQP Model:

 Server
 +-------------------------------+
 | Virtual host |
 | +-----------------------+ |
 | | | |
 +-------------+ | | +-----------+ | |
 | Publisher | ----------> | Exchange | | |
 | Application | | | +-----+-----+ | |
 +-------------+ | | | | |
 | | | | |
 | | | Binding | |
 | | | | |
 | | \|/ | |
 +-------------+ | | +---------+ | |
 | Consumer | <----------- | Message | | |
 | Application | | | | Queue | | |
 +-------------+ | | +---------+ | |
 | +-----------------------+ |
 +-------------------------------+

We can summarize what a middleware server is: it is a data server that accepts messages and does two main things
with them; it routes them to different consumers depending on arbitrary criteria, and it buffers them in memory or on
disk when consumers are not able to accept them fast enough.

In a pre-AMQP server these tasks are done by monolithic engines that implement specific types of routing and
buffering. The AMQP Model takes the approach of smaller, modular pieces that can be combined in more diverse and
robust ways. It starts by dividing these tasks into two distinct roles:

1. The exchange, which accepts messages from producers and routes them to message queues.

2. The message queue, which stores messages and forwards them to consumer applications.

There is a clear interface between exchange and message queue, called a "binding", which we will come to later. The
usefulness of the AMQP Model comes from three main features:

1. The ability to create arbitrary exchange and message queue types (some are defined in the standard, but others can
be added as server extensions).

2. The ability to wire exchanges and message queues together to create any required message-processing system.

3. The ability to control this completely through the protocol.

In fact, AMQP provides runtime-programmable semantics.

2.1.1. The Message Queue

A message queue stores messages in memory or on disk, and delivers these in sequence to one or more consumer
applications. Message queues are message storage and distribution entities. Each message queue is entirely
independent.

The AMQP Model

12

A message queue has various properties: private or shared, durable or transient, permanent or temporary. By selecting
the desired properties, we can use a message queue to implement conventional middleware entities such as:

1. A standard store-and-forward queue, which holds messages and distributes these between subscribers on a round-
robin basis. Store and forward queues are typically durable and shared between multiple subscribers.

2. A temporary reply queue, which holds messages and forwards these to a single subscriber. Reply queues are
typically temporary, and private to one subscriber.

3. A "pub-sub" subscription queue, which holds messages collected from various "subscribed" sources, and forwards
these to a single subscriber. Subscription queues are typically temporary, and private to one subscriber.

These categories are not formally defined in AMQP: they are examples of how message queues can be used. It is trivial
to create new entities such as durable, shared subscription queues.

2.1.2. The Exchange

An exchange accepts messages from a producer application and routes them to message queues according to pre-
arranged criteria. These criteria are called "bindings". Exchanges are matching and routing engines. That is, they
inspect messages and using their binding tables, decide how to forward these messages to message queues. Exchanges
never store messages.

The term "exchange" is used to mean both a class of algorithm, and the instances of such an algorithm. More properly,
we speak of the "exchange type" and the "exchange instance".

AMQP defines a number of standard exchange types, which cover the fundamental types of routing needed to do
common message delivery. AMQP servers will provide default instances of these exchanges. Applications that use
AMQP can additionally create their own exchange instances. Exchange types are named so that applications which
create their own exchanges can tell the server what exchange type to use. Exchange instances are also named so that
applications can specify how to bind queues and publish messages.

The exchange concept is intended to define a model for adding extensibile routing behavior to AMQP servers.

2.1.3. The Routing Key

In the general case, an exchange examines a message's properties, its header fields, and its body content, and using
this and possibly data from other sources, decides how to route the message.

In the majority of simple cases, the exchange examines a single key field, which we call the "routing key". The routing
key is a virtual address that the exchange may use to decide how to route the message.

For point-to-point routing, the routing key is the name of a message queue.

For topic pub-sub routing, the routing key is the topic hierarchy value.

In more complex cases, routing may be based on message header fields and/or the message body.

2.1.4. Analogy to Email

If we make an analogy with an email system, we see that the AMQP concepts are not radical:

1. An AMQP message is analogous to an email message.

2. A message queue is like a mailbox.

The AMQP Model

13

3. A consumer is like a mail client that fetches and deletes email.

4. An exchange is like an MTA (mail transfer agent) that inspects email and decides, on the basis of routing keys and
tables, how to send the email to one or more mailboxes.

5. A routing key corresponds to an email To: or Cc: or Bcc: address, without the server information (routing is entirely
internal to an AMQP server).

6. Each exchange instance is like a separate MTA process, handling some email sub-domain, or particular type of
email traffic.

7. A binding is like an entry in an MTA routing table.

The power of AMQP comes from our ability to create queues (mailboxes), exchanges (MTA processes), and bindings
(routing entries), at runtime, and to chain these together in ways that go far beyond a simple mapping from "to" address
to mailbox name.

We should not take the email-AMQP analogy too far: there are fundamental differences. The challenge in AMQP is
to route and store messages within a server. Routing within a server and routing between servers are distinct problems
and have distinct solutions, if only for banal reasons such as maintaining transparent performance.

To route between AMQP servers owned by different entities, one sets up explicit bridges, where one AMQP server
acts as the client of another server for the purpose of transferring messages between those separate entities. This way
of working tends to suit the types of businesses where AMQP is expected to be used, because these bridges are likely
to be underpinned by business processes, contractual obligations and security concerns. This model also makes AMQP
'spam' more difficult.

2.1.5. Message Flow

This diagram shows the flow of messages through the AMQP Model server:

 +-------------+ +-------+
 | Publisher | -----------------> |Message|
 | application | +---+---+
 +-------------+ |
 |
 +---------+
 |Exchange |
 +----+----+
 |
 +------------+------------+
 | | |
 Message Message Message
 Queue Queue Queue
 +-------------+ +-------+ +-------+ +-------+
 | Consumer | +-------+ +-------+ +-------+
 | application | <---- |Message| +-------+ +-------+
 +-------------+ +-------+ +-------+ +-------+

2.1.5.1. Message Life-cycle

An AMQP message consists of a set of header properties plus an opaque body.

A new message is created by a producer application using a client API1. The producer places application data in the
message body and perhaps sets some message properties. The producer labels the message with routing information,

1Note that the AMQP specification does not currently define a standard client API.

The AMQP Model

14

which is superficially similar to an address, but almost any scheme can be created. The producer then sends the message
to an exchange on the server.

When the message arrives at the server, the exchange (usually) routes the message to a set of message queues which
also exist on the server. If the message is unroutable, the exchange may drop it silently, reject it, or route it to an
alternate exchange depending on the behavior requested by the producer.

A single message can exist on many message queues. An AMQP server implementation may handle this in different
ways, by copying the message, by using reference counting, etc. This does not affect interoperability. However, when
a message is routed to multiple message queues, it is identical on each message queue. There is no unique identifier
that distinguishes the various copies.

When a message arrives in a message queue, the message queue tries immediately to pass it to a consumer application
via AMQP. If this is not possible, the message queue stores the message (in memory or on disk as requested by the
producer) and waits for a subscriber to be ready.

When the message queue can deliver the message to a subscriber, it removes the message from its internal buffers.
This can happen immediately, or after the subscriber has successfully processed and explicitly accepted the message.
The subscriber chooses how and when messages are accepted. The subscriber can also release a message back onto
the queue, or reject a message as unprocessable.

Producer messages and subscriber accepts are grouped into "transactions". When an application plays both roles, which
is often, it does a mix of work: sending and accepting messages, and then committing or rolling back the transaction 2.

2.1.5.2. What The Producer Sees

By analogy with the email system, we can see that a producer does not send messages directly to a message queue.
Allowing this would break the abstraction in the AMQP Model. It would be like allowing email to bypass the MTA's
routing tables and arrive directly in a mailbox. This would make it impossible to insert intermediate filtering and
processing, spam detection, for instance.

The AMQP Model uses the same principle as an email system: all messages are sent to a single point, the exchange,
which inspects the messages based on rules and information that are hidden from the sender, and routes them to drop-
off points that are also hidden from the sender.

2.1.5.3. What The Consumer Sees

Our analogy with email starts to break down when we look at consumers. Email clients are passive - they can read
their mailboxes, but they do not have any influence on how these mailboxes are filled. An AMQP consumer can also
be passive, just like email clients. That is, we can write an application that expects a particular message queue to be
ready and bound, and which will simply process messages off that message queue.

However, we also allow AMQP client applications to:

1. Create or destroy message queues.

2. Define the way these message queues are filled, by making bindings.

3. Select different exchanges which can completely change the routing semantics.

This is like having an email system where one can, via the protocol:

1. Create a new mailbox.

2. Tell the MTA that all messages with a specific header field should be copied into this mailbox.

2 Message deliveries from the server to the subscriber are not transacted.

The AMQP Model

15

3. Completely change how the mail system interprets addresses and other message headers.

We see that AMQP is more like a language for wiring pieces together than a system. This is part of our objective, to
make the server behavior programmable via the protocol.

2.1.5.4. Default Flow

Most integration architectures do not need this level of sophistication. Like the amateur photographer, a majority of
AMQP users need a "point and shoot" mode. AMQP provides this through the use of two simplifying concepts:

1. A default exchange for message producers.

2. A default binding for message queues that selects messages based on a match between routing key and message
queue name.

In effect, the default binding lets a producer send messages directly to a message queue, given suitable authority –
it emulates the simplest "send to destination" addressing scheme people have come to expect of traditional middleware.

2.2. Virtual Hosts

A Virtual Host 3 comprises its own name space, a set of exchanges, message queues, and all associated objects. Each
connection MUST BE associated with a single virtual host.

The client selects the virtual host after authentication. This requires that the authentication scheme of the server is
shared between all virtual hosts on that server. The authorization scheme used MAY be unique to each virtual host.

All channels within the connection work with the same virtual host. There is no way to communicate with a different
virtual host on the same connection, nor is there any way to switch to a different virtual host without tearing down
the connection and beginning afresh.

The protocol offers no mechanisms for creating or configuring virtual hosts - this is done in an undefined manner
within the server and is entirely implementation-dependent.

2.3. Exchanges

An exchange is a message routing agent within a virtual host. An exchange instance (which we commonly call "an
exchange") accepts messages and routing information - principally a routing key - and either passes the messages to
message queues, or possibly to some internal service defined in a vendor extension. Exchanges are named on a per-
virtual host basis.

Applications can freely create, share, use, and destroy exchange instances, within the limits of their authority.

Exchanges may be durable, transient, or auto-deleted. Durable exchanges last until they are deleted. Transient
exchanges last until the server shuts-down. Auto-deleted exchanges last until they are no longer used.

The server provides a specific set of exchange types. Each exchange type implements a specific matching and routing
algorithm, as defined in the next section. AMQP mandates a small number of exchange types, and recommends some
more. Further, each server implementation may add its own exchange types.

An exchange can route a single message to many message queues in parallel. This creates multiple instances of the
message that are consumed independently.

3The term Virtual Host is taken from the use popularized by the Apache HTTP server. Apache Virtual Hosts enable Internet Service providers to
provide bulk hosting from one shared server infrastructure. We hope that the inclusion of this capability within AMQP opens up similar opportunities
to larger organizations.

The AMQP Model

16

2.3.1. Types of Exchange

Each exchange type implements a specific routing algorithm. There are a number of standard exchange types, explained
below, but there are two that are particularly important:

1. the direct exchange type, which routes based on an exact match between the binding key and routing key

2. the topic exchange type, which routes based on a pattern match between the binding key and routing key

Note that:

1. the default exchange (See: Section 2.1.5.4, “Default Flow”) is a direct exchange

2. the server will create a direct and (if supported) a topic exchange at start-up with well-known names and client
applications may depend on this

2.3.1.1. The Direct Exchange Type

The direct exchange type provides routing of messages to zero or more queues based on an exact match between
the routing key of the message, and the binding key used to bind the queue to the exchange. This can be used to
construct the classic point-to-point queue based messaging model, however, as with any of the defined exchange types,
a message may end up in multiple queues when multiple binding keys match the message's routing key.

The direct exchange type works as follows:

1. A message queue is bound to the exchange using a binding key, K.

2. A publisher sends the exchange a message with the routing key R.

3. The message is passed to all message queues bound to the exchange with key K where K = R.

The server MUST implement the direct exchange type and MUST pre-declare within each virtual host at least two
direct exchanges: one named "amq.direct", and one with no public name that serves as the default exchange for
message transfers to the server.

Note that message queues can be bound using any valid binding key value, but most often message queues will be
bound using their own name as the binding key.

In particular, all message queues MUST BE automatically bound to the nameless exchange using the message queue's
name as the binding key.

2.3.1.2. The Fanout Exchange Type

The fanout exchange type provides routing of messages to all bound queues regardless of the message's routing key.

The fanout exchange type works as follows:

1. A message queue is bound to the exchange with no arguments.

2. A publisher sends the exchange a message.

3. The message is passed to the all message queues bound to the exchange unconditionally.

The server MUST implement the fanout exchange type and MUST pre-declare within each virtual host at least one
fanout exchange named "amq.fanout".

The AMQP Model

17

2.3.1.3. The Topic Exchange Type

The topic exchange type provides routing to bound queues based on a pattern match between the binding key and the
routing key of the message. This exchange type may be used to support the classic publish/subscribe paradigm using a
topic namespace as the addressing model to select and deliver messages across multiple consumers based on a partial
or full match on a topic pattern.

The topic exchange type works as follows:

1. A message queue is bound to the exchange using a binding key, K.

2. A publisher sends the exchange a message with the routing key R.

3. The message is passed to the all message queues where K matches R.

The binding key is formed using zero or more tokens, with each token delimited by the '.' char. The binding key
MUST be specified in this form and additionally supports special wild-card characters: '*' matches a single word and
'#' matches zero or more words.

Thus the binding key "*.stock.#" matches the routing keys "usd.stock" and "eur.stock.db" but not "stock.nasdaq".

This exchange type is optional.

The server SHOULD implement the topic exchange type and in that case, the server MUST pre-declare within each
virtual host at least one topic exchange, named "amq.topic".

2.3.1.4. The Headers Exchange Type

The headers exchange provides for complex, multi-part expression routing based on header properties within the
AMQP message.

The headers exchange type works as follows:

1. A message queue is bound to the exchange with a table of arguments containing the headers to be matched for that
binding and optionally the values they should hold.

2. A publisher sends a message to the exchange where the 'headers' property contains a table of names and values.

3. The message is passed to the queue if the headers property matches the arguments with which the queue was bound.

The matching algorithm is controlled by a special bind argument passed as a name value pair in the arguments table.
The name of this argument is 'x-match'. It can take one of two values, dictating how the rest of the name value pairs
in the table are treated during matching:

(i) 'all' implies that all the other pairs must match the headers property of a message for that message to be routed
(i.e. an AND match)

(ii) 'any' implies that the message should be routed if any of the fields in the headers property match one of the fields
in the arguments table (i.e. an OR match)

A field in the bind arguments matches a field in the message headers if either (1) the field in the bind arguments has
no value and a field of the same name is present in the message headers or (2) if the field in the bind arguments has a
value and a field of the same name exists in the message headers and has that same value.

Any field starting with 'x-' other than 'x-match' is reserved for future use and will be ignored.

The AMQP Model

18

The server SHOULD implement the headers exchange type and in that case, the server MUST pre-declare within each
virtual host at least one headers exchange, named "amq.match".

2.3.1.5. The System Exchange Type

The system exchange type works as follows:

1. A publisher sends the exchange a message with the routing key S.

2. The system exchange passes this to a system service S.

System services starting with "amq." are reserved for AMQP usage. All other names may be used freely by server
implementations. This exchange type is optional.

2.3.1.6. Implementation-defined Exchange Types

All non-normative exchange types MUST be named starting with "x-". Exchange types that do not start with "x-" are
reserved for future use in the AMQP standard.

2.3.2. Exchange Life-cycle

Each AMQP server pre-creates a number of exchanges (more pedantically, "exchange instances"). These exchanges
exist when the server starts and cannot be destroyed.

AMQP applications can also create their own exchanges. AMQP does not use a "create" command as such; it uses
a "declare" command, which means: "create if not present, otherwise continue". It is plausible that applications will
create exchanges for private use and destroy them when their work is finished. AMQP provides a command to destroy
exchanges but in general applications do not do this.

In our examples in this chapter, we will assume that the exchanges are all created by the server at start-up. We will
not show the application declaring its exchanges.

2.4. Message Queues

A message queue is a named buffer that holds messages on behalf of a set of consumer applications. Applications can
freely create, share, use, and destroy message queues, within the limits of their authority.

Message queues provide a limited FIFO guarantee. For messages of equal priority originating from a given producer,
delivery to a given consumer will always be attempted in the order the messages were placed on the queue. Should
the initial delivery attempt not result in a consumed message, those messages MAY be redelivered out of order.

Message queues may be durable, transient, or auto-deleted. Transient message queues last until the server shuts-down.
Auto-deleted message queues last until they are no longer used. Any queue may be explicitly deleted if the user (client)
has the appropriate permissions.

Message queues hold their messages in memory, on disk, or some combination of these.

Message queues are scoped to a virtual host.

Queue names must consist of between 1 and 255 characters. The first character must be limited to letters a-z or A-Z,
digits 0-9, or the underscore character ('_'); all those following must be legal UTF-8 characters.

Message queues hold messages and distribute them to one or more subscribed clients.

The AMQP Model

19

Message queues track message acquisition. Messages must be acquired to be dequeued. This prevents multiple clients
from acquiring and then consuming the same message simultaneously. This may be used to safely load balance
messages from a single queue among multiple consumers.

Messages from a queue may be sent to more than one client if messages are released or were initially sent without being
acquired. Message queues may distribute unacquired messages to clients in order to permit non destructive browsing
of the queue contents.

2.4.1. Message Queue Properties

When a client application creates a message queue, it can select some important properties:

1. name - Generally, when applications share a message queue they agree on a message queue name beforehand.

2. durable - If specified, the message queue remains present and active when the server restarts. It may lose non-
persistent messages if the server restarts.

3. auto-delete - If specified, the server will delete the message queue when all clients have finished using it, or shortly
thereafter.

2.4.2. Queue Life-cycles

There are two main message queue life-cycles:

1. Durable message queues which are shared by many subscribers and have an independent existence - i.e. they will
continue to exist and collect messages whether or not there are subscribers to receive them.

2. Temporary message queues which are private to one subscriber and are tied to that subscriber. When the subscriber
is cancelled, the message queue is deleted.

There are some variations on these, such as shared message queues which are deleted when the last of many
subscribers is cancelled.

This diagram shows the way temporary message queues are created and deleted:

 Message
 Queue
 +-------+
 Declare +-------+ Message queue is created
 --------> +-------+
 +-------------+ +-------+
 | Consumer | Subscribe
 | application | -------->
 +-------------+ \ /
 Cancel +\\----/*
 --------> +--\\//-+ Message queue is deleted
 +--//\\-+
 +//----*
 / \

2.5. Bindings

A binding is a relationship between a message queue and an exchange. The binding specifies routing arguments that
tell the exchange which messages the queue should get.

The AMQP Model

20

Applications create and destroy bindings as needed to drive the flow of messages into their message queues. The
lifespan of bindings depend on the message queues and exchanges they are defined for - when a message queue, or
an exchange, is destroyed, its bindings are also destroyed.

Bindings are constructed by commands from the client application (the one owning and using the message queue) to
an exchange. We can express a binding command in pseudo-code as follows:

Exchange.Bind <exchange> TO <queue> WHERE <condition>

The specific semantics of the Exchange.Bind command depends on the exchange type.

Let's look at three typical use cases: shared queues, private reply queues, and pub-sub subscriptions.

2.5.1. Constructing a Shared Queue

Shared queues are the classic middleware point-to-point queue. In AMQP we can use the default exchange and default
binding. Let's assume our message queue is called "app.svc01". Here is the pseudo-code for creating the shared queue:

Queue.Declare
 queue=app.svc01
 exclusive=FALSE

We may have many consumers on this shared queue. To consume from the shared queue, each consumer does this:

Message.Subscribe
 queue=app.svc01

To publish to the shared queue, each producer sends a message to the default exchange:

Message.Transfer
 routing_key=app.svc01

2.5.2. Constructing a Reply Queue

Reply queues are usually temporary. They are also usually private, i.e. read by a single subscriber. Apart from these
particularities, reply queues use the same matching criteria as standard queues, so we can also use the default exchange.
In order to prevent namespace clashes between temporary queues generated by different clients, it is recommended
that clients include a UUID (Universally Unique ID as defined by RFC-4122) or other globally unique identifier in
the queue name.

Here is the pseudo-code for creating a reply queue:

Queue.Declare
 queue=tmp.550e8400-e29b-41d4-a716-446655440000
 exclusive=TRUE
 auto_delete=TRUE

The AMQP Model

21

To publish to the reply queue, a producer sends a message to the default exchange:

Message.Transfer
 routing_key=tmp.550e8400-e29b-41d4-a716-446655440000

One of the standard message properties is Reply-To, which is designed specifically for carrying the name of reply
queues.

2.5.3. Constructing a Pub-Sub Subscription Queue

In classic middleware, the term "subscription" is vague and refers to at least two different concepts: the set of criteria
that match messages and the temporary queue that holds matched messages. AMQP separates the work into bindings
and message queues.

A pub-sub subscription queue collects messages from multiple sources through a set of bindings that match topics,
message fields, or content in different ways. The key difference between a subscription queue and a named or reply
queue is that the subscription queue name is irrelevant for the purposes of routing, and routing is done on abstracted
matching criteria rather than a 1-to-1 matching of the routing key field.

Let's take the common pub-sub model of topic trees and implement this. We need an exchange type capable of matching
on a topic tree. In AMQP, this is the topic exchange type. The topic exchange matches wild-cards like "STOCK.USD.*"
against routing key values like "STOCK.USD.NYSE".

We cannot use the default exchange or binding because these do not support topic-style routing. So we have to create
a binding explicitly. Here is the pseudo-code for creating and binding the pub-sub subscription queue:

Queue.Declare
 queue=tmp.2
 auto_delete=TRUE

Exchange.Bind
 exchange=amq.topic
 TO
 queue=tmp.2
 WHERE routing_key=STOCK.USD.*

As soon as the binding is created, messages will be routed from the exchange into the queue, however, to consume
messages from the queue, the client must subscribe:

 Message.Subscribe
 queue=tmp.2

When publishing a message, the producer does something like this:

Message.Transfer
 exchange=amq.topic
 routing_key=STOCK.USD.IBM

The AMQP Model

22

The topic exchange processes the incoming routing key ("STOCK.USD.IBM") with its binding table, and finds one
match, for tmp.2. It then routes the message to that subscription queue.

2.6. Messages

A message is the atomic unit of routing and queuing. Messages have a header consisting of a defined set of properties,
and a body that is an opaque block of binary data.

Messages may be persistent - a persistent message is held securely on disk and guaranteed to be delivered even if there
is a serious network failure, server crash, overflow etc.

Messages may have a priority level. A high priority message may be sent ahead of lower priority messages waiting in
the same message queue. When messages must be discarded, the server will first discard low-priority messages.

The server does not modify message bodies, but may modify specific message headers prior to forwarding them to
the consuming application.

2.6.1. Flow Control

Flow control may be used to match the rate at which messages are sent to the available resources at the receiver. The
receiver may be an AMQP server receiving messages published by a client, or a client receiving messages sent by an
AMQP server from a queue. The same mechanism is used in both cases. In general, flow control uses the concept of
credit to specify how many messages or how many octets of data may be sent at any given point without exhausting
the receiver's resources. Credit is depleted as messages or data is sent, and increased as resources become free at the
receiver. Pre-fetch buffers may be used at the receiver to reduce latency.

2.6.2. Transfer of Responsibility

The receiver of a message signals the sender when responsibility for a message has been accepted. When a client
sends a message to a server, an accept from the server to the client confirms successful routing and placement of the
message on any queues. When a server sends a message to a client, an accept from the client to the server confirms
successful processing of the message, and signals the server to remove the message from the queue. AMQP supports
two different accept modes:

1. Explicit, in which the receiving application must send an accept for each message, or batch of messages, that is
transferred.

2. None, in which the message is considered accepted as soon as it is sent.

2.7. Subscriptions

We use the term subscription to mean the entity that controls how a specific client application receives messages from
a message queue. This is not to be confused with the separate notion of a subscriber in so-called publish/subscribe
messaging. When a client "starts a subscription", it creates a subscription entity in the server. When the client "cancels
a subscription", it destroys a subscription entity in the server.

Subscriptions belong to a single client session and cause the message queue to send messages asynchronously to the
client.

2.8. Transactions

AMQP defines two separate transaction models, a one-phase commit transaction model (known as tx) and a two-phase
commit model for distributed transactions (known as dtx). The standard, one-phase commit, model acts within the

The AMQP Model

23

scope of a single session. The client has control over selecting whether a session is to be transactional or not, but once
a session has been selected as a transactional (by the issuance of a tx.select command) the session will remain
transactional until the point at which it is destroyed.

Once a session has been selected as transactional, then the commands issued by the client that instruct message transfer
and message acceptance on that session are only committed on the server once a tx.commit command has been issued.
Other commands that alter server state are not transactional, and cannot be rolled back. For instance, the declaration
of queues and exchanges are not transactional. 4

If an AMQP client "publishes" a message (issues a message.transfer command) within the scope of a
transaction, then the message will not be available for delivery from any queue to which it is routed until the transaction
completes. The queues to which the message will be routed are determined at the point at which the message is
published, and not at the point of the commit. If the server rejects the message which is published this does not cause
rollback of the transaction. Rejection will happen as soon as the server has determined that the message should be
rejected and will not wait until a commit is issued.

When a transaction is rolled-back then the effects of the client issued publish and accept commands are discarded. It
should be noted that "acquiring" a message is not a transactional operation, and thus any message acquired by the client
within the scope of the transaction remains acquired. In practice this means that after a rollback the client still owns
all the messages which were delivered to it during the scope of the transaction (whether they were accepted or not). If
the client wishes the server to re-take responsibility for these messages, it must issue appropriate release commands.

2.9. Distributed Transactions

The distributed transaction class provides support for the X-Open XA architecture.

The dtx class is used to demarcate and coordinate transactions. The dtx.start and dtx.end commands demarcate AMQP
transactional work on a given session. Transaction coordination and recovery are provided by the remaining commands
in the dtx class.

Both the OMG OTS and JTS/JTA models rely upon "Resource Manager Client" (RM Client) instances, which provide
an implementation of the XA interface for the underlying resource that are necessary to participate within a global
transaction. These RM Client instances are identified by Rmids through either the xa_switch in C/C++ or XAResource
in Java.

As depicted on the following figure, a Transaction Manager uses the RM Client XA interface to demarcate transaction
boundaries and coordinate transaction outcomes. RM Clients use the dtx.start and dtx.end commands to associate a
transaction with a session. The transactional session is then exposed to the application driving the transaction, and
may be used to transactionally produce and consume messages. RM clients use the dtx coordination commands to
propagate transaction outcomes and recovery operations to the AMQP server. A second coordination session can be
used for that purpose.

 +---+---------------+ +--------+
 | | prepare/commit/rollback +----| |
+-------------+ XA | X |===============|==========>| CC | |
| TM |<========| A | | +----| |
+-------------+ | |===========+ | Coordination | |
 ^ +---+ start/end | | Session | AMQP |
 | start/ | | | | Server | |
 | commit/ +---+ RM Client | | Transactional | |
 | rollback | A | | | Session | |
+-------------+ | M | | | +----| |
| Application |<========| Q |===========+===|==========>| TC | |
+-------------+ produce | P | | +----| |
 consume +---+---------------+ +--------+

4It may help to think of it as the "enqueue" and "de-queue" operations on the message queues as being those that are controlled by transactions.

The AMQP Model

24

2.9.1. Distributed Transaction Scenario

The following diagram illustrates a messaging scenario where an application "Application" transactionally consumes a
message from a queue Q1 (using transaction T1 achieved through the transaction manger TM). Based on the consumed
message, the application updates a database table Tb using DBMS and produces a message on queue Q2 on behalf
of transaction T1.

Appl. TM DBMS_RM_Client AMQP_RM_Client AMQP_Server

 | | | | |
 | begin | | | |
 +------->+ xa_start(T1) | | |
 | +--------------->+ | |
 | | xa_start(T1) | |
 | +---------------------------->+ dtx.select |
 | | | +------------------------------->+ \
 | | | | dtx.start(xid1) | |
 | | | +------------------------------->+ |
 | consume a message from Q1 | | | T
 +------------------------------------->+ message.subscribe(Q1) | | r
 | | | +------------------------------->+ | a
 | | | | accept message M | | n S
 | | | +------------------------------->+ | s e
 | update a table | | | | a s
 +------------------------>+ | | | c s
 | produce a message on Q2 | | | t i
 +------------------------------------->+ message.transfer(Q2) | | i o
 | | | +------------------------------->+ | o n
 | commit | | | | | n
 +------->+ | | | | a
 | | xa_end(T1) | | | | l
+--------------->+			
	xa_end(T1)		
+---------------------------->+ dtx.end(xid1)			
		+------------------------------->+ /	
	xa_prepare(T1)		
+--------------->+		C	
	xa_prepare(T1)		o
+---------------------------->+ dtx.prepare(xid1)	\ o		
		+------------------------------->+	r S
	xa_commit(T1)		
+--------------->+			i s
	xa_commit(T1)		
+---------------------------->+ dtx.commit(xid1)		a i	
		+------------------------------->+ / t o	
 o
_______________________________________/ n
 Thread of control

25

3. Sessions
3.1. Session Definition

Sessions are named interactions between AMQP peers. A session name is scoped to an authentication principal, and the
name is determined by the application layer. Sessions may have state associated with them, on one or both of the peers
participating in the interaction. Every command which publishes a message, creates a queue or selects a transactional
mode must take place within the context of a session. Sessions are the foundation upon which the rest of AMQP rests.

A session can be seen as:

• the context in which AMQP's built-in exactly-once delivery operates (wider contexts can of course usefully be
defined at application levels)

• the interface between the network protocol mapping and the model layers

• a scope for the lifetime of entities model such as entities queues, exchanges, and subscriptions

• the scope for command identifiers (see Section 3.2.1, “Sequential Identification”)

3.1.1. Session Lifetime

Sessions are not explicitly created or destroyed, in a sense a session is "always there". Rather than creating a session,
a peer must attempt to "attach" to a session on its partner. The receiver of this attachment request can then look-up
whether it is holding any state for this session.

State related to a session must be retained by both peers while they are attached to a session. If the session becomes
detached (either through an explicit request to detach, or through the network connection between the two peers being
broken) then the state attached to the session may be held for some period of time which has previously been agreed
between the two peers.

3.1.2. A Transport For Commands

The AMQP model interacts by sending "commands" between the two peers. These commands are effectively sent
"over" the session. As a command is handed down from the model layer to the session, it is assigned an identifier.
These identifiers can then be used to correlate commands with results, or to perform synchronization on the otherwise
asynchronous AMQP command stream.

3.1.3. Session as a Layer

Sessions act as the interface between the network protocol mapping and the model layers. In particular it can be used
as a mechanism to ensure exactly-once delivery of a command while the session state is retained by both peers. This
state (the "session state") consists of at least

• a replay buffer of full or partial commands which a peer does not yet have confirmation its partner has received, and

• an idempotency barrier - a set of commands identifier which the peer knows that it has received but cannot be sure
that its partner will not attempt to re-send.

Since the session name is assigned by the application layer, there may be more state associated with it than the state
detailed here. This extra state may (for example) be used to perform recovery when the session state has expired.
However, in this chapter, when we talk about session state we will be referring only to the state held at the session layer.

Sessions

26

3.2. Session Functionality

The session layer provides a number of crucial services to the model built on top of it:

• sequential identification of commands,

• confirmation that commands will be executed,

• notification when commands are complete,

• replay and recovery from network failure,

• reconciliation of state when peers fail.

3.2.1. Sequential Identification

Each command issued by a peer must be individually identified in order for the system as a whole to be able to
guarantee exactly-once execution. The session layer uses a sequential numbering scheme with rollover to identify each
command uniquely within a session.

The notion of identity allows for correlation between commands and results being returned asynchronously. The
command identifier is made visible through the model layer of the protocol. When a result is returned from a command
the command identifier is used to correlate the result to the command which gave rise to it.

3.2.2. Confirmation

In order for a peer to be able to safely discard state related to a given command, it must receive a guarantee that the
command will be executed. To be slightly more precise, the sender must receive a confirmation that the command has
been executed, or that its delivery has been preserved to the desired degree of durability.

In practice there are two types of messages that one may wish to send through a messaging system: durable messages
and transient messages. For a transient message the general contract of the messaging system to the application is that
messages may be lost if the messaging system itself loses transient state (e.g. in the case of a power outage). For a
durable message, the messaging system must make the guarantee that the message will be held in the most durable
store available.

The session layer handles the sending and receiving of confirmations. This allows the session layer to manage the
state that it needs to hold in order to be able to recover in the case of a temporary failure of either peer, or of the
transport between the peers.

Confirmations can be batched or deferred indefinitely. In particular if a peer does not require an urgent confirmation
notification, the confirmation may be omitted as it is implied by the completion of the command.

3.2.3. Completion

Separate from the notion of confirmation is the notion of completion. For the purposes of synchronization and to ensure
a total ordering between different sessions, it is necessary for a peer to be informed when a particular command has
been completely executed. Completion necessarily implies confirmation.

Where the peer has not requested urgent notification of completion, such notifications can be deferred and batched to
apply to a range of commands. This reduces the amount of network traffic. The use of sequential ids to name commands
allows a compact encoding of a batch of consecutive completions.

Sessions

27

For example, if three queues are declared in sequence, as commands 1 to 3; the server may notify of completion as
follows:

 -------- (1) Queue.Declare -------------->
 queue = queue1

 -------- (2) Queue.Declare -------------->
 queue = queue2

 <-------- Session.Completed -----
 commands = (1)

 -------- (3) Queue.Declare -------------->
 queue = queue3

 <-------- Session.Completed -----
 commands = (1 to 3)

Note that the receiver of the commands will send the entire set of commands which have completed and for which it
has not been informed by the sender of the commands that the completion is known. Since this is sent as a range (e.g.
1-3) rather than a discrete set, this is not as inefficient as it may at first appear.

3.2.4. Replay and Recovery

In general an AMQP system should be expected to cope with temporary network failures, or the failure of a single
node in a cluster of AMQP servers. In order to survive such failures, the session must be used to replay commands
whose receipt was in doubt at the point of failure. The session layer provides the tools necessary to identify the set of
commands in-doubt, and to replay them without the risk of accidental duplicate delivery.

3.3. Transport requirements

The session layer lies on top of the underlying network mapping. The session requires that the network mapping
provide the following

• ordered delivery, as in no overtaking

• atomic transmission of control and data units

• detection of network failure

3.4. Commands and Controls

There are two distinct data units transferred in AMQP: commands and controls. Commands are sent on sessions.
Commands are assigned a name and reliably delivered by the session. Controls, on the other hand, are not reliably
delivered and need not be on a session, they may be considered to be communicating about a session.

3.4.1. Commands

Commands consist of a (class-code,command-code) pair, a session.header, a structured set of arguments
and possibly a payload consisting of an optional sequence of message headers and an opaque message body. The
command also has assigned to it a unique name as explained above.

Sessions

28

3.4.1.1. The sync bit
The session.header is a structure passed on all commands. It provides a uniform mechanism for the sender of
the command to request immediate notification of the completion of the command. When this "sync-bit" is set, the
receiver of the command is under an obligation to send out a completion notification as soon as it becomes possible.

3.4.1.2. Results

Some commands, such as queries, return a "result". Such commands will normally be executed synchronously. A
special "generic" Execution.Result command is used to return results. It is correlated to the command which
gave rise to the result by referencing the command-id of that command. Such a result must be generated before the
command which gives rise to it has been identified as "completed". If a command is specified as generating a result,
it MUST always generate a result - results are never optional.

3.4.1.3. Exceptions

AMQP uses exceptions to handle errors. That is:

1. Any operational error (e.g. message queue not found or insufficient access rights) results in an exception which
will destroy session state.

2. Any structural error (e.g. invalid argument or bad sequence of commands) that can be expected to recur if the same
series of set data were replayed between the peers also results in an exception which will destroy session state.

3. Error conditions that cannot be ascribed to a single session, or which may be related to a transient error state on
one of the peers, are dealt with by closing the connection. Closing the connection may not destroy session state
(session state will only be lost at the point where the timeout for the disconnected lifetime of the session expires).

Where a failure has occurred within the model layer, the reason for the failure will be conveyed using the
Execution.Exception command. This command informs the recipient of the reason for failure (using a three
digit error code), the command id of the command which caused the error (if applicable) along with other potential
useful debugging information.

Immediately after the Execution.Exception has been sent, the sending peer will destroy all session layer state
held for this session, issue a session.request-timeout(0), and finally issue a session.detach.

3.4.2. Controls

In contrast to commands, controls are unreliable with respect to sessions. This means that the session layer itself does
not identify or attempt to replay controls in the face of network outage. There is no notification of the completion of
controls. Because of their inherent unreliability, session controls are designed to be idempotent (i.e. repeated issuing
of the same control has the same affect as one successful issuance).

While commands must travel in a strictly ordered sequence, controls may interleave or interrupt this stream. In
particular a control may be sent half way through a single large command. This allows urgent controls to be sent
without being held up by application data transfer.

Controls are used to manage session state.

3.5. Session Lifecycle

A session may be in either an attached or detached state. While detached the two peers may hold on to state information
about the session. If re-attachment of the session is attempted, the two peers must establish which commands must be
replayed to establish a consistent view of the session between the two peers. To avoid holding on to unnecessary state

Sessions

29

while the session is detached, and to remove the necessity for the replaying of commands at the time of attachment,
the peers may attempt to cleanly close the session, by establishing a consistent view before the detach leaving no in-
doubt state to be rectified on re-attachement.

3.5.1. Attachment

The client attempts to attach to the session by sending a session.attach control. If this succeeds a
session.attached control will be sent in the other direction.

The successful attachment to a session provides a guarantee of exclusive access to the session from a given peer, this
is important since sequence numbers must originate from a single source.

3.5.2. Session layer state

As alluded to previously, a session which is attached, or which has been detached in a "non-clean" way may have
associated with it some amount of session state:

1. A logical list of identified (numbered) commands recording all commands issued by this peer and for which this
peer has not yet received confirmation of receipt. This list is the set of commands that would potentially have to
be replayed if the connection was lost at this point in time (these commands might all still be "on the wire").

2. A set of command identifiers representing commands sent to this peer which have been confirmed or completed
by this peer; but for which this peer has not yet received notification that its partner knows the command to be
complete. This set forms the idempotence barrier. If, on re-attachment a command with one of these identifiers is
sent, it will be ignored as this peer has already received it.

3. Command sequence counters, storing the next sequence number to assign to outgoing commands; and the sequence
number to associate to the next incoming command (since sequence numbers are implicit rather than explicitly
sent; both peers need to keep track of both the last outgoing and incoming commands).

3.5.3. Reliability

Session layer reliability is obtained by the retention of the session state while the session is detached (either through
an explicit detach or through failure of the underlying transport). The amount of time that the session state is retained
while detached is governed by a timeout value that can be set while the session is attached. If the timeout value is
0, then the session state is lost as soon as the session becomes detached. For simple implementations of AMQP it is
perfectly acceptable only to allow a timeout value of 0 on all sessions. This obviously removes the ability to recover
from network failure by using sessions.

3.5.4. Replay

When a session is re-attached to, the two peers negotiate to establish which commands that have been sent were actually
received by their partners. It is possible that some subset of the commands that they have previously sent were "on
the wire" when the session was detached. In this case, these commands need to be replayed to ensure exactly once
delivery of commands to the upper layers of the protocol.

While theoretically commands can be replayed at any time while they are still in the idempotence barrier of the peer's
partner there is normally no reason to replay commands while AMQP is running over a "reliable" transport such as
TCP or SCTP. The only point at which it becomes necessary to replay commands is when re-attaching to a session
after an unclean detachment of a session (see Section 3.6.2, “Attempting to re-attach to an existing session”).

Sessions

30

3.6. Using Session Controls

The full set of session controls is documented in the section Class: session in Part II of this document. However it is
useful to demonstrate how certain common activities are achieved using the session controls.

3.6.1. Attaching to a "new" session

The following interaction details how a client and server establish an attachment to a "new" session.

First the client must attempt to attach to the session

 -------- Session.Attach(name: <session name>, force: false) -------------->

 <------- Session.Attached(name: <session name>) ---------------

The next action each peer must take is to verify the state which its peer holds about the session. It does this by requesting
(via the flush control) the peer to send:

1. the identifiers of any commands which it is expecting (if the peer has any state at all, this will include the id of
the next command to be sent),

2. the identifiers of commands which have been sent to the peer, and which it has confirmed the receipt of,

3. the identifiers of commands which have been sent to the peer, and which the peer has completed execution of, but
for which the peer has not yet received a signal that the completion is acknowledged
.

If any of these lists is not empty, then the peer is holding some state about the session, and therefore it is not "new".
The client should thus abort the connection (since it is expecting to create a new session and does not know how to
deal with the existing session state it has discovered exists).

The following interaction shows how the state is discovered. Note this interaction occurs in both directions. The flush
control should be the first control sent by each peer on the session.

 -------- Session.Flush(expected: true, confirmed: true, -------------->
 completed: true)

 <------- Session.Expected(commands: <expected-commands>, ---------------
 fragments: <expected-fragments>)

 <------- Session.Confirmed(commands: <confirmed-commands>, ---------------
 fragments: <confirmed-fragments>)

 <------- Session.Completed(commands: <completed-commands>, ---------------
 timely-reply: true)

At this point if any of the received <expected-commands>, <confirmed-commands>, or <completed-commands> are
not empty, then the session name we are using is known to our peer, and instead of creating a new session we are
unwittingly reattaching to an existing session.

Presuming that all three command sets are empty the client can proceed to request a timeout value for the session:

Sessions

31

 -------- Session.Request-Timeout(timeout: <desired-timeout>) -------------->

 <------- Session.Timeout(timeout: <timeout>) -------------->

At this point both peers can also inform their partner of the identifier at which they wish to begin identifying their
command sequence:

 -------- Session.Command-Point(command-id: 0, -------------->
 command-offset: 0)

 <------- Session.Command-Point(command-id: 0, ---------------
 command-offset: 0)

From this point on the session is established, and commands can be sent in either direction.

3.6.2. Attempting to re-attach to an existing session

The process for attempting to re-attach to a session starts similarly to the to that of attaching to a new session (the
only difference is that we try to force the attachment in case an old attachment is still believed to be active by the
receiving peer):

 -------- Session.Attach(name: <session name>, force: true) -------------->

 <------- Session.Attached(name: <session name>) ---------------

Followed by the symmetric request for state information (again this request occurs in both directions, although only
one direction is shown here):

 -------- Session.Flush(expected: true, confirmed: true, -------------->
 completed: true)

 <------- Session.Expected(commands: <expected-commands>, ---------------
 fragments: <expected-fragments>)

 <------- Session.Confirmed(commands: <confirmed-commands>, ---------------
 fragments: <confirmed-fragments>)

 <------- Session.Completed(commands: <completed-commands>, ---------------
 timely-reply: true)

Now, the attaching peer has a set of "pending" commands which at the time the session was previously detached, it
knew it has sent, but for which it hadn't yet received confirmation of completion. For each such command it can check
to see if the command is in the "confirmed" set sent by its peer. If the command is in the confirmed set then it can be
removed from the "pending" list. The remaining commands in the "pending" list will have to be replayed.

Based on this information the peer can now set the command-point to the beginning of the replay list, then replay
the commands.

Sessions

32

 -------- Session.Command-Point(command-id: <N>, -------------->
 command-offset: <n>)

 <------- Session.Command-Point(command-id: <M>, ---------------
 command-offset: <m>)

 :
 :
 :
 --------- <Replayed Commands> -------------->

 <-------- <Replayed Commands> ---------------

Following this it can then process the confirmed and completed sets in the same way it would during normal session
activity (including the sending of session.known-completed controls).

3.6.3. Detaching cleanly

If detaching from a session is planned, it is polite for both peers to minimize the amount of state that the other has
to retain. Thus the peers should first attempt to quiesce the session before issuing the detach. A quiesce is performed
in the following manner:

First the peer sends an execution.sync command to force the sending of outstanding session.completed
controls once all current commands have been executed.

 -------- Execution.Sync -------------->
 :
 :
 <------- Session.Completed(commands: {n...m}) ---------------

Next the peer processes the session.completeds and sends the session.known-completed responses.
Once the peer is sure that its partner has received all the known-completed controls, it can be sure that the partner
will have minimal state to hold on to. To ascertain that the known-completed controls have been received, it can
repeatedly issue session.flush controls until the returned session.completed set is empty.

 -------- Session.Known-Completed(commands: {n..m} -------------->

 /* Now loop checking through the following until
 the Session.Completed set is empty */

 -------- Session.Flush(completed: true) -------------->

 <------- Session.Completed(commands: {i...j}) ---------------

If the process of detaching is truly clean, then it will have to have been agreed at a higher level - at the AMQP model
layer both peers will have been put into a state where no new commands will spontaneously be generated (e.g. all
subscriptions will have been canceled). Both peers will perform this dialog simultaneously, and can work out when

Sessions

33

they have arrived at a state where neither have any commands in doubt. At that point a detach can be carried out by
either party, and the peers will have minimal (or if they choose, zero) state to maintain.

3.6.4. Closing

To close a session, you need to ensure that the peer you are communicating with retains no state. The simplest way
to do this is to request that the session timeout be set to 0, wait for confirmation of this, and then detach. To cleanly
close, the session should be quiesce before detaching. If there is outstanding session state when the session is closed,
the session is effectively being aborted and this will most likely result in an error at the higher layers.

Part II. Specification

35

Table of Contents
4. Transport ... 40

4.1. IANA Port Number ... 40
4.2. Protocol Header .. 40
4.3. Version Negotiation .. 40
4.4. Framing .. 41

4.4.1. Assemblies, Segments, and Frames .. 41
4.4.2. Channels and Tracks ... 42
4.4.3. Frame Format .. 43

4.5. SCTP .. 44
5. Formal Notation .. 45

5.1. Docs and Rules .. 45
5.2. Types ... 46
5.3. Structs .. 47
5.4. Domains .. 50

5.4.1. Enums .. 51
5.5. Constants .. 51
5.6. Classes .. 52

5.6.1. Roles ... 52
5.7. Controls .. 53

5.7.1. Responses ... 54
5.8. Commands .. 54

5.8.1. Results ... 55
5.8.2. Exceptions .. 55

5.9. Segments ... 56
5.9.1. Header Segment ... 56
5.9.2. Body Segment ... 57

6. Constants ... 58
7. Types .. 59

7.1. Fixed width types ... 59
7.1.1. bin8 ... 59
7.1.2. int8 .. 60
7.1.3. uint8 .. 61
7.1.4. char ... 62
7.1.5. boolean ... 63
7.1.6. bin16 ... 64
7.1.7. int16 .. 65
7.1.8. uint16 ... 66
7.1.9. bin32 ... 67
7.1.10. int32 ... 68
7.1.11. uint32 ... 69
7.1.12. float ... 70
7.1.13. char-utf32 .. 71
7.1.14. sequence-no ... 72
7.1.15. bin64 .. 73
7.1.16. int64 ... 74
7.1.17. uint64 ... 75
7.1.18. double .. 76
7.1.19. datetime .. 77
7.1.20. bin128 .. 78
7.1.21. uuid ... 79
7.1.22. bin256 .. 80

Specification

36

7.1.23. bin512 .. 81
7.1.24. bin1024 ... 82
7.1.25. bin40 .. 83
7.1.26. dec32 ... 84
7.1.27. bin72 .. 85
7.1.28. dec64 ... 86
7.1.29. void ... 87
7.1.30. bit .. 88

7.2. Variable width types ... 90
7.2.1. vbin8 ... 90
7.2.2. str8-latin ... 91
7.2.3. str8 .. 92
7.2.4. str8-utf16 .. 93
7.2.5. vbin16 .. 94
7.2.6. str16-latin ... 95
7.2.7. str16 .. 96
7.2.8. str16-utf16 .. 97
7.2.9. byte-ranges .. 98
7.2.10. sequence-set .. 99
7.2.11. vbin32 ... 100
7.2.12. map .. 101
7.2.13. list .. 102
7.2.14. array ... 103
7.2.15. struct32 ... 104

7.3. Mandatory Types .. 106
8. Domains .. 107

8.1. segment-type ... 107
8.2. track .. 107
8.3. str16-array .. 108

9. Control Classes ... 110
9.1. connection .. 110

9.1.1. connection.close-code ... 111
9.1.2. connection.amqp-host-url .. 112
9.1.3. connection.amqp-host-array ... 113
9.1.4. connection.start ... 114
9.1.5. connection.start-ok ... 116
9.1.6. connection.secure .. 117
9.1.7. connection.secure-ok .. 118
9.1.8. connection.tune ... 119
9.1.9. connection.tune-ok ... 120
9.1.10. connection.open ... 122
9.1.11. connection.open-ok .. 123
9.1.12. connection.redirect ... 124
9.1.13. connection.heartbeat ... 125
9.1.14. connection.close .. 126
9.1.15. connection.close-ok .. 127

9.2. session ... 129
9.2.1. Rules .. 130
9.2.2. session.header ... 130
9.2.3. session.command-fragment .. 131
9.2.4. session.name ... 132
9.2.5. session.detach-code .. 133
9.2.6. session.commands .. 134
9.2.7. session.command-fragments ... 135

Specification

37

9.2.8. session.attach .. 136
9.2.9. session.attached ... 137
9.2.10. session.detach .. 138
9.2.11. session.detached .. 139
9.2.12. session.request-timeout ... 140
9.2.13. session.timeout .. 141
9.2.14. session.command-point ... 142
9.2.15. session.expected .. 143
9.2.16. session.confirmed ... 144
9.2.17. session.completed .. 145
9.2.18. session.known-completed .. 146
9.2.19. session.flush .. 147
9.2.20. session.gap ... 148

10. Command Classes .. 150
10.1. execution .. 150

10.1.1. execution.error-code ... 150
10.1.2. execution.sync ... 151
10.1.3. execution.result .. 152
10.1.4. execution.exception .. 153

10.2. message .. 155
10.2.1. Rules .. 157
10.2.2. message.delivery-properties ... 158
10.2.3. message.fragment-properties .. 160
10.2.4. message.reply-to .. 161
10.2.5. message.message-properties ... 162
10.2.6. message.destination .. 164
10.2.7. message.accept-mode .. 165
10.2.8. message.acquire-mode .. 166
10.2.9. message.reject-code .. 167
10.2.10. message.resume-id .. 168
10.2.11. message.delivery-mode .. 169
10.2.12. message.delivery-priority ... 170
10.2.13. message.flow-mode .. 171
10.2.14. message.credit-unit ... 172
10.2.15. message.transfer ... 173
10.2.16. message.accept .. 175
10.2.17. message.reject .. 176
10.2.18. message.release .. 177
10.2.19. message.acquire ... 178
10.2.20. message.resume ... 179
10.2.21. message.subscribe .. 180
10.2.22. message.cancel .. 182
10.2.23. message.set-flow-mode .. 183
10.2.24. message.flow ... 184
10.2.25. message.flush .. 185
10.2.26. message.stop ... 186

10.3. tx .. 188
10.3.1. Rules .. 188
10.3.2. tx.select .. 188
10.3.3. tx.commit ... 189
10.3.4. tx.rollback .. 190

10.4. dtx ... 192
10.4.1. Rules .. 193
10.4.2. dtx.xa-result .. 193

Specification

38

10.4.3. dtx.xid ... 194
10.4.4. dtx.xa-status .. 195
10.4.5. dtx.select .. 196
10.4.6. dtx.start .. 197
10.4.7. dtx.end ... 199
10.4.8. dtx.commit ... 201
10.4.9. dtx.forget .. 203
10.4.10. dtx.get-timeout ... 204
10.4.11. dtx.prepare .. 205
10.4.12. dtx.recover .. 207
10.4.13. dtx.rollback ... 208
10.4.14. dtx.set-timeout ... 210

10.5. exchange ... 212
10.5.1. Rules .. 212
10.5.2. exchange.name .. 213
10.5.3. exchange.declare .. 214
10.5.4. exchange.delete ... 217
10.5.5. exchange.query .. 218
10.5.6. exchange.bind ... 219
10.5.7. exchange.unbind .. 222
10.5.8. exchange.bound ... 223

10.6. queue ... 226
10.6.1. Rules .. 226
10.6.2. queue.name ... 226
10.6.3. queue.declare .. 227
10.6.4. queue.delete .. 230
10.6.5. queue.purge .. 231
10.6.6. queue.query .. 232

10.7. file ... 234
10.7.1. Rules .. 235
10.7.2. file.file-properties ... 235
10.7.3. file.return-code .. 236
10.7.4. file.qos ... 237
10.7.5. file.qos-ok .. 238
10.7.6. file.consume .. 239
10.7.7. file.consume-ok ... 241
10.7.8. file.cancel ... 242
10.7.9. file.open ... 243
10.7.10. file.open-ok ... 244
10.7.11. file.stage ... 245
10.7.12. file.publish .. 246
10.7.13. file.return .. 248
10.7.14. file.deliver .. 249
10.7.15. file.ack ... 250
10.7.16. file.reject .. 251

10.8. stream .. 253
10.8.1. Rules .. 254
10.8.2. stream.stream-properties .. 254
10.8.3. stream.return-code .. 255
10.8.4. stream.qos .. 256
10.8.5. stream.qos-ok .. 257
10.8.6. stream.consume ... 258
10.8.7. stream.consume-ok ... 260
10.8.8. stream.cancel .. 261

Specification

39

10.8.9. stream.publish ... 262
10.8.10. stream.return ... 264
10.8.11. stream.deliver .. 265

11. The Model .. 267
11.1. Exchanges .. 267

11.1.1. Mandatory Exchange Types .. 267
11.1.2. Optional Exchange Types ... 268
11.1.3. System Exchanges ... 270
11.1.4. Implementation-defined Exchange Types ... 271
11.1.5. Exchange Naming ... 271

11.2. Queues .. 271
11.2.1. queue_naming .. 271

12. Protocol Grammar .. 272
12.1. Augmented BNF Rules ... 272
12.2. Grammar ... 272

40

4. Transport
4.1. IANA Port Number

The standard AMQP port number has been assigned by IANA as 5672 for TCP, UDP and SCTP.

There is currently no UDP mapping defined for AMQP. The UDP port number is reserved for future transport
mappings.

4.2. Protocol Header

Prior to sending any frames on a connection, each peer MUST start by sending a protocol header that indicates the
protocol version used on the connection. 1

This is an 8-octet sequence:

 4 OCTETS 1 OCTET 1 OCTET 1 OCTET 1 OCTET
 +----------+---------+----------+---------+---------+
 | "AMQP" | class | instance | major | minor |
 +----------+---------+----------+---------+---------+

The protocol header consists of the upper case letters "AMQP" followed by:

1. The protocol class, which is 1 for all AMQP protocols.

2. The protocol instance, which is:

Instance Value

AMQP over TCP/IP 1

AMQP over SCTP/IP 2

3. The major version of the protocol, used in accordance with Part II, “Specification”.

4. The minor version of the protocol, used in accordance with Part II, “Specification”.

4.3. Version Negotiation

The protocol negotiation model is compatible with 1) existing protocols such as HTTP that initiate a connection with
a constant text string, and 2) firewalls that sniff the start of a protocol in order to decide what rules to apply.

An AMQP client and server agree on a protocol and version as follows:

• When the client opens a new socket connection to an AMQP server, it MUST send a protocol header with the client's
preferred protocol version.

• If the requested protocol version is supported, the server MUST send its own protocol header with the requested
version to the socket, and then implement the protocol accordingly.

• If the requested protocol version is not supported, the server MUST send a protocol header with a supported protocol
version and then close the socket.

1 Note that for protocol versions prior to 0-10 the protocol header was sent by the client only. An implementation that wishes to support these
versions in addition to 0-10 should respond in a manner consistent with the requested version.

Transport

41

• If the server can't parse the protocol header, the server MUST send a valid protocol header with a supported protocol
version and then close the socket.

Based on this behavior a client can discover which protocol and versions a server supports:

• An AMQP client MAY detect the server protocol version by attempting to connect with its highest supported version
and reconnecting with a lower version received back from the server.

• An AMQP server MUST accept the AMQP protocol as defined by class = 1, instance = 1.

Examples:

 Client sends: Server responds: Comment:
 ------------- ------------------------------- ---
 AMQP%d1.1.0.10 AMQP%d1.1.0.10<start connection> Server accepts connection for:
 Class:1(AMQP), Instance:1(TCP), Vers:0-10

 AMQP%d2.0.1.1 AMQP%d1.1.0.10<close connection> Server rejects connection for:
 Class:2(?), Instance:0(?), Vers:1-1
 Server responds it supports:
 AMQP, TCP, Vers:0-10

 HTTP AMQP%d1.1.0.10<close connection> Server rejects connection for: HTTP
 Server responds it supports:
 AMQP, TCP, Vers:0-10

Please note that the above examples use the literal notation defined in RFC 2234 for non alphanumeric values.

4.4. Framing

4.4.1. Assemblies, Segments, and Frames

An assembly is the largest structural unit directly represented by the AMQP framing system. AMQP encodes each
semantic unit (control or command) into exactly one assembly. Each assembly is divided into one or more segments.
AMQP uses segments to represent distinct syntactic units (e.g. header vs body) within a given semantic unit. Finally,
each segment is divided into one or more frames. A frame is the atomic unit of transmission within AMQP.

Assemblies and segments have no fixed size limit. Frames are always limited by the maximum frame size permitted by
the transport mapping. In addition, for a given connection, frame sizes are also limited by a per connection maximum
negotiated between the endpoints.

For the wire level encoding, the three-level structure is flattened into a single uniform frame representation. In addition
to a payload, each frame carries an additional four flags. Two flags mark the position of the payload within the segment,
and the other two mark the position of the segment within the assembly.

flag meaning

first-segment The frame is part of the first segment in the assembly.

last-segment The frame is part of the last segment in the assembly.

first-frame The frame is the first in the segment.

last-frame The frame is the last in the segment.

Based on these four flags, the segment and assembly boundaries, as well as the full payload can be reconstructed from
a sequence of frames as depicted below.

Transport

42

 +----+-------------------+------------------------------------+
 | A0 | A1 | A2 | | | | | | | | | |
 |----|---------+---------|---------+---------+----------------|
 | S0 | S1 | S2 | S3 | S4 | S5 |
 |----|----+----|----+----|----+----|----+----|----+-----+-----|
 | F0 | F1 | F2 | F3 | F4 | F5 | F6 | F7 | F8 | F9 | F10 | F11 |
 +----+----+----+----+----+----+----+----+----+----+-----+-----+

A<n> the nth assembly

S<n> the nth segment

F<n> the nth frame

The length of a segment is determined by the accumulated payload length of all the contained frames. Likewise the
length of an assembly is determined from the accumulated length of the contained segments. Note that the size of the
frame header itself must be subtracted from the frame size in order to correctly calculate the payload length.

4.4.2. Channels and Tracks

AMQP framing permits multiple independent dialogs to share a single frame transport (connection). Each frame
includes a number that uniquely identifies the dialog to which a frame belongs. This number divides a single frame
transport into distinct channels. There is no order preserved between frames sent on different channels. Even when the
frame transport provides a total ordering, an implementation MAY service frames on distinct channels in any desired
order.

The figure below depicts frames from two separate channels traveling along on a single frame transport divided into
many channels:

 +-----+ +-----+
 F1, F2 -->| CH0 |----+ +--->| CH0 |--> F1, F2
 +-----+ | | +-----+
 F1, F2 -->| CH1 |----+ +--->| CH1 |--> F1, F2
 +-----+ | | +-----+
 -->| CH2 |----+ F1-0, F1-1, F2-0, F2-1 +--->| CH2 |-->
 +-----+ | +-----------------+ | +-----+
 -->| CH3 |----+----->| Frame Transport |------+--->| CH3 |-->
 +-----+ | +-----------------+ | +-----+
 -->| CH4 |----+ +--->| CH4 |-->
 +-----+ | | +-----+
 -->| CH5 |----+ +--->| CH5 |-->
 +-----+ | | +-----+
 -->| CH6 |----+ +--->| CH6 |-->
 +-----+ +-----+

 F<n>: The <n>th frame on a channel
 F<n-m>: The <n>th frame from channel <m>

Within each channel there is a further division of frames by track. Like channels within the frame transport, tracks
permit multiple concurrent dialogs within a single channel. However, unlike channel multiplexing, the order of frames
within a channel is retained regardless of the track number. An implementation MUST service frames on distinct
tracks within a single channel according to the total ordering provided by the channel. Together, the (channel, track)
pair provides the sequencing used to reconstruct assembly payloads from the fragments transmitted on a given frame
transport.

Transport

43

The AMQP frame format permits up to 64K channels, and up to 16 tracks. The specification only defines two of the 16
tracks. The remaining tracks are reserved. AMQP channels provide the frame transport for sessions. AMQP defines
two tracks within a session to distinguish commands from controls. Controls are carried on track zero, and commands
are carried on track one. This permits controls to be sent in-between consecutive frames of a single command. This
prevents transmission of large multi-frame commands from blocking the control dialog between the communication
endpoints. In many respects this is an ordinary multiplexing of a channel into two tracks, however because frames
and the constructed assemblies MUST be processed in the order defined by the channel, it is possible to define the
semantics of controls to operate with respect to a well-defined point in the command track.

 +---------+ +---------+
 Control -->| Track 0 |----+ +---------+ +--->| Track 0 |--> Control
 +---------+ |--->| Channel |---| +---------+
 Command -->| Track 1 |----+ +---------+ +--->| Track 1 |--> Command
 +---------+ +---------+

Channels and tracks provide full-duplex communication. Where two way dialogs are specified, the defined responses,
unless otherwise specified, are carried on the same channel and track as the initiating requests.

• An AMQP peer MUST permit communication on channel 0 for any established connection. This channel always
exists and can never be negotiated away.

• An AMQP peer SHOULD support multiple channels. The maximum number of channels is defined at connection
negotiation, and a peer MAY negotiate this down to 1.

• Each peer SHOULD balance the traffic on all open channels in a fair fashion. This balancing can be done on a per-
frame basis, or on the basis of amount of traffic per channel. A peer SHOULD NOT allow one very busy channel
to starve the progress of a less busy channel.

4.4.3. Frame Format

All frames consist of a 12 octet header, and a payload of variable size:

 +-----------+------------+-----------------------+
 0 | vv00 BEbe | type | size |
 +-----------+------------+-----------------------+
 4 | 0000 0000 | 0000 track | channel |
 +-----------+------------+-----------+-----------+
 8 | 0000 0000 | 0000 0000 | 0000 0000 | 0000 0000 |
 +-----------+------------+-----------+-----------+
 12 | |
 . .
 . payload .
 . .
 size-4 | |
 +--+

Field Identifier Description

vv frame-format-version Set to 00 for this framing format.

0 reserved All reserved bits MUST be 0.

B first-segment Set to 1 for the first (or only) segment of an assembly, 0
otherwise.

Transport

44

Field Identifier Description

E last-segment Set to 1 for the last (or only) segment of an assembly, 0
otherwise.

b first-frame Set to 1 for the first (or only) frame of a segment, 0
otherwise.

e last-frame Set to 1 for the last (or only) frame of a segment, 0
otherwise.

type segment-type Indicates the format and purpose of a segment.

size frame-size The total frame size. This includes the frame header. If the
size < 12, the frame is malformed.

track track-number The track to which the frame belongs.

channel channel-number The channel to which the frame belongs.

4.5. SCTP

SCTP provides additional capabilities beyond TCP. This section describes how AMQP implementations should take
advantage of these.

SCTP manages transmission through individual data items (called "messages" in the SCTP specification), each of
which can be fragmented or bundled, depending on the path MTU size. The specification requires that the protocol
header be sent as a single SCTP message, and then defines a one-to-one mapping between an AMQP frame and an
SCTP message. This means that the SCTP stack's EOM notification to the SCTP application layer directly corresponds
to the AMQP end-of-frame condition.

SCTP allows for multiple concurrent streams of data on the same association. The data within a stream is delivered
to the application in order, but without respect to data in other streams, so one stream will not block another due to
packet loss. AMQP has a concept of channels, which can benefit from the property of one channel not being able to
block another due to packet loss.

Since SCTP streams are unidirectional, and AMQP channels are bidirectional, the specification maps one AMQP
channel to two SCTP streams, one in each direction. The SCTP stream ID in each direction corresponding to the same
AMQP channel will have the same value (i.e. AMQP channel {X} maps to two SCTP streams {Y, Y} where one is
inbound and one is outbound). It is always true that a given AMQP channel maps to a single set of two SCTP streams.
However, the inverse is not necessarily true — a given set of two SCTP streams could have multiple AMQP channels
mapped to it. (In the degenerate case, where you might have only 2 SCTP streams on the whole association, it becomes
similar to a full-duplex TCP connection).

To avoid server resource usage handling unsupported protocol versions (common when a protocol is being upgraded
from one version to another), SCTP's Adaptation Layer Indicator should be used to allow for early rejection of
unsupported versions, before an association is established. The server will set its Adaptation Layer Indicator to a value
assigned by IANA. This value will correspond to AMQP 0-10.

The SCTP Payload Protocol ID field will contain a value assigned by IANA to indicate AMQP. This is a generic
AMQP indication, not a version indicator.

SCTP stream 0 in each direction is used for all communication before framing is set up (i.e. for the SASL negotiation).
After framing is set up, Stream 0 is used for all communication that is defined to happen on AMQP channel 0.

Note

The IANA assigned constants referred to in this section are not yet defined. When available, they will be
included in a future publication of the specification.

45

5. Formal Notation
AMQP semantics are defined in terms of types, structs, domains, constants, controls, and commands. AMQP formally
defines the semantics of each protocol construct using an XML notation. Each kind of construct is defined with a
similarly named element. These definitions are grouped into related classes of functionality.

Construct Definition Notation

Type: a set of values with formally defined operations and encoding <type name="..." ... > ... </type>

Struct: a compound type of named fields <struct name="..." ... > ... </struct>

Domain: a restricted type <domain name="..." ... > ... </domain>

Constant: a constant value <constant name="..." ... > ... </constant>

Control: a one-way instruction <control name="..." ... > ... </control>

Command: an acknowledged instruction <command name="..." ... > ... </command>

5.1. Docs and Rules

The semantics of each AMQP construct are formally defined by documentation and rules that appear within the
definition of the given construct. Documentation is expressed with the doc element:

 <doc title="..."
 type="...">
 ...
 </doc>

Attributes of a doc element:

title If present, this attribute contains a title for the contained documentation.

type Permitted values: grammar, scenario, picture, bnf

If present, this attribute indicates the type of the contained documentation. This primarily serves as a
formatting hint for processing tools.

The doc elements of type grammar use the following notation:

1. 'S:' indicates a control or command sent from the server to the client

2. 'C:' indicates a control or command sent from the client to the server

3. '*:' indicates a control or command initiated from either peer

4. 'R:' indicates a control or command sent by the partner of the initiating peer

5. [...] means zero or one instance

6. +term or +(...) expression means '1 or more instances'

7. *term or *(...) expression means 'zero or more instances'.

Formal Notation

46

Rules

Rules are used to formally name a particular aspect of the semantics of a given construct:

 <rule name="..."
 label="...">
 <doc ... > ... </doc>
 ...
 </rule>

Attributes of a rule:

name The name of the rule. This is unique within the defining context.

label A sentence fragment containing a short description of the rule.

5.2. Types

Each AMQP type defines a format for encoding a particular kind of data. Additionally, most AMQP types are assigned
a unique code that functions as a descriminator when more than one type may be encoded in a given position.

AMQP types broadly fall into two categories: fixed-width and variable-width. Variable-width types are always prefixed
by a byte count of the encoded size, excluding the bytes required for the byte count itself.

Unless otherwise specified, AMQP uses network byte order for all numeric values.

AMQP types are formally defined with the type element:

 <type name="..."
 code="...">
 <doc type="bnf">
 ...
 </doc>
 </type>

Attributes of a type definition:

name The name of the type. This is unique among all top-level AMQP constructs.

code The type code.

A type code is a single octet which may hold 256 distinct values. Ranges of types are mapped to specific sizes of data
so that an implementation can easily skip over any data types not natively supported.

Code Category Format

0x00 - 0x0F Fixed width. One octet of data.

0x10 - 0x1F Fixed width. Two octets of data.

0x20 - 0x2F Fixed width. Four octets of data.

0x30 - 0x3F Fixed width. Eight octets of data.

Formal Notation

47

Code Category Format

0x40 - 0x4F Fixed width. Sixteen octets of data.

0x50 - 0x5F Fixed width. Thirty-two octets of data.

0x60 - 0x6F Fixed width. Sixty-four octets of data.

0x70 - 0x7F Fixed width. One hundred twenty-eight octets of data.

0x80 - 0x8F Variable width. One octet of size, 0-255 octets of data.

0x90 - 0x9F Variable width. Two octets of size, 0-65535 octets of data.

0xA0 - 0xAF Variable width. Four octets of size, 0-4294967295 octets of data.

0xB1 - 0xBF Reserved

0xC0 - 0xCF Fixed width. Five octets of data.

0xD0 - 0xDF Fixed width. Nine octets of data.

0xE0 - 0xEF Reserved

0xF0 - 0xFF Fixed width. Zero octets of data.

The particular type code ranges were chosen with the following rationale in mind:

 Bit: 7 6 5 4 3 2 1 0
 --
 0 | fix-exp | subtype
 1 0 | var-exp | subtype
 1 1 | fix-odd | subtype
 --

 fix-exp = log2(size of fixed width type)
 var-exp = log2(size of size of variable width type) (Note: 11 is reserved)
 fix-odd = 00, for 5-byte fixed width
 01, for 9-byte fixed width
 10, reserved
 11, for 0-byte fixed width

5.3. Structs

An AMQP struct defines a compound type. That is a type whose format is defined entirely in terms of other types. The
simplest kind of struct consists of an ordered sequence of encoded field data for a well known set of fields. Each field
is encoded according to the type definition for that field. Several options may be used to augment this encoding:

• A struct may be packed, in which case logically absent fields are omitted from the encoded data. For these structs,
the field data is directly preceded by either 1, 2 or 4 octets of packing flags to indicate which fields are present.
Note that although the notation and encoding scheme described here would function equally well for any number of
packing flags, the structs defined by the specification only make use of 0, 1, 2, and 4 octets worth of packing flags.

• A struct may be coded, in which case the field data, and any packing flags are preceded by a 2 octet code that
uniquely identifies the struct definition. This includes the number of packing flags (if any) as well as the index,
name, and type of each field.

• A struct may be sized, in which case the field data, any packing flags, and the struct code (if present) are all prefixed
by either a 1, 2, or 4 octet unsigned byte count.

The general layout of all structs is defined in the following BNF:

Formal Notation

48

 struct = [struct-size] [class-code struct-code] [packing-flags] data

 struct-size = uint8 / uint16 / uint32
 class-code = uint8 ; zero for top-level structs
 struct-code = uint8
 packing-flags = uint8 / 2 uint8 / 4 uint8

 data = *OCTET ; encoded field values as defined by the
 ; order and type of the fields specified
 ; in the struct definition

A struct is formally defined with the struct element:

 <struct name="..."
 size="..."
 code="..."
 pack="...">
 <field name="..."
 type="..."
 required="..." />
 ...
 </struct>

The order of the fields within the struct definition defines the order that field data is encoded.

Attributes of a struct definition:

size Permitted values: 0, 1, 2, 4

If a non-zero size width is specified in the struct definition, the encoded struct is preceded by a byte count
of the indicated width. In addition to the encoded field data, this byte count MUST include the struct code
and packing flags if present.

The size field MUST be omitted if no size is specified or size="0" is specified in the struct definition.

code Permitted values: 0-255

If a code is included in the struct definition, the specified value MUST be preceded with the class-code, and the
resulting two octets encoded prior to the encoded field data and packing flags (if any), but after the size (if any).

The class-code and struct-code MUST be omitted from encoded structs if no code or code="none" is specified
in the struct definition.

The value of the combined class-code and struct-code is unique to any given struct definition, and MAY be
used when decoding to determine which struct definition has been encoded.

pack Permitted values: 0, 1, 2, 4

If a non-zero pack width is specified in the struct definition, the encoded field data MUST be preceded by
the indicated number of octets. The nth octet contains packing flags for the nth group of 8 fields specified
in the struct definition. Within each octet the fields map in order from the least significant bit to the most
significant bit.

If a packing flag is set the corresponding field MUST be included in the encoded data.

Formal Notation

49

If a packing flag is not set the corresponding field MUST NOT be included in the encoded data.

If the struct has fewer properties than packing flags the extra packing flags are reserved for future extension
of the struct and MUST be set to zero.

Attributes of a field definition:

name The name of the field. This uniquely identifies the field within the struct.

type The type attribute identifies how the field data is to be encoded. This could refer to a primitive type,
another struct definition, or a domain definition.

required Permitted values: true, false

If this attribute is true, then the given field MUST always be present. If a struct is parsed and the field
is absent, then the whole struct SHOULD be considered malformed.

Examples

Simple structs consist only of the encoded field data:

 <struct name="error-info" pack="0">
 <field name="code" type="uint16" />
 <field name="text" type="str16" />
 </struct>

 +--------+--------+
 | code | text |
 +--------+--------+
 | uint16 | str16 |
 +--------+--------+

A sized struct prefixes the encoded representation with a byte count:

 <struct name="address" size="2">
 <field name="host" type="str8"/>
 <field name="port" type="uint16" />
 </struct>

 +---------+---------------------+
 | 2 octet | n octets |
 +---------+----------+----------+
 | n | host | port |
 +---------+----------+----------+
 | str8 | uint16 |
 +----------+----------+

Formal Notation

50

Packed structs omit logically absent fields from the wire encoding:

 <struct name="binding" pack="1">
 <field name="exchange-name" type="str8"/>
 <field name="queue-name" type="str8"/>
 <field name="binding-key" type="str8"/>
 </struct>

 only present if flags are set
 |
 +-------------+-------------+
 | | |
 1 octet \|/ \|/ \|/
 +---------+---------------+------------+-------------+
 | flags | exchange-name | queue-name | binding-key |
 +---------+---------------+------------+-------------+
 | str8 | str8 | str8 |
 +---------------+------------+-------------+

These encoding options can be combined:

 <struct name="content-headers" size="4" pack="2" code="123">
 <field name="mime-type" type="str8"/>
 <field name="length" type="uint64"/>
 <field name="encoding" type="str8"/>
 ...
 </struct>

 only included if flags are set
 |
 +---------+---------+
 | | |
 4 octets 1 octet 1 octet 2 octets \|/ \|/ \|/
 +----------+------------+---------+----------+-----------+--------+----------+-----
 | size | class-code | 123 | flags | mime-type | length | encoding | ...
 +----------+------------+---------+----------+-----------+--------+----------+-----
 (code) str8 uint64 str8

5.4. Domains

An AMQP domain defines a new type with a format identical to another type, but with a restricted range of values.
In some cases a closed set of permitted values is specified with an enum, and in other cases an open set of values is
specified with docs and rules.

An AMQP domain is formally defined with the domain element:

Formal Notation

51

 <domain name="..."
 type="...">
 <doc>
 ...
 </doc>
 ...
 </domain>

Attributes of a domain definition:

name The name of the domain. This is unique within the defining context.

type The type that defines the format for this domain. This could refer to a primitive type, a struct, or another
domain definition.

5.4.1. Enums

If a domain definition includes an enum, the values permitted by the domain are restricted to a set of explicitly named
choices:

 <domain name="..."
 type="...">
 <doc>
 ...
 </doc>
 ...
 <enum>
 <choice name="..."
 value="..."/>
 ...
 </enum>
 </domain>

Attributes of a choice:

name The name of the choice. This uniquely identifies the choice within the enum.

value The value of the choice. This is any value that can be represented by the type of the enum and is distinct
from other choices associated with the enum.

5.5. Constants

An AMQP constant is a fixed value referenced throughout the specification. Constants are formally defined with the
constant element:

 <constant name="..."
 value="...">
 <doc>
 ...
 </doc>
 </constant>

Formal Notation

52

Attributes of a constant definition:

name The name of the constant. This is unique among all top-level AMQP constructs.

value The value of the constant.

5.6. Classes

An AMQP class groups together related command, control, struct, and domain definitions. Classes function as a
namespace for those constructs defined within. Additionally, each class is assigned a code that forms the high byte of
any control-codes, command-codes, or struct-codes associated with the contained definitions.

A class is formally defined with the following notation:

 <class name="..."
 code="...">
 ...
 <role .../>
 <struct ... />
 <domain ... />
 <control ... />
 <command ... />
 ...
 </class>

name The name of the class. This is unique among all top-level AMQP constructs.

code Permitted values: 1-255

An octet that uniquely identifies the class. The special value zero is reserved to identify globally defined
constructs.

5.6.1. Roles

Each class formally defines the different roles an implementation may fulfill. These roles are referenced from within
the contained control and command definitions when defining the levels of implementation optionality.

A role is formally defined with the following notation:

 <role name="..." implement="...">
 <doc>...</doc>
 </role>

name The name of the role. This is unique within the class.

implement Permitted values: MAY, SHOULD, MUST

Defines whether an AMQP implemention MAY, SHOULD, or MUST implement the specified role.

Each control and command formally defines its implementation requirements using the following notation:

Formal Notation

53

 <implement role="..." handle="..." />

role The name of a role defined within the containing class. The implementation requirement is interpreted
relative to this role.

handle Permitted values: MAY, SHOULD, MUST

Defines whether an AMQP implemention implementing the specified role MAY, SHOULD, or MUST be
able to receive the containing control or command.

5.7. Controls

An AMQP control defines the format and semantics of a one-way instruction. Because controls are one-way, in the
event of transport failure they may need to be repeated until the effect of the instruction can be observed. For this
reason, controls often ellicit a reply that permits the peer to observe the effect. Because even the reply may be lost
to a transport failure, the semantics of controls are usually defined to be idempotent so that repeated execution of the
same instruction does not cause undesirable side-effects.

An AMQP control is encoded into the control segment of an assembly as follows:

• The class-code is placed in the first octet.

• The control-code is placed in the second octet.

• The field values are then encoded as an unsized, uncoded struct with two octets of packing flags.

 1 OCTET 1 OCTET 2 OCTETS
 +------------+--------------+---------------+------------+
 | class-code | control-code | packing-flags | fields ... |
 +------------+--------------+---------------+------------+

An AMQP control is formally defined with the control element:

 <control name="..."
 code="...">
 ...
 <implement role="..." handle="..." />
 ...
 <field name="..."
 type="..."/>
 ...
 </control>

Attributes of a control definition:

name The name of the control. This is unique within the defining class.

code Permitted values: 0-255

Formal Notation

54

An octet that uniquely identifies the control within the class.

The field definitions define the arguments for the control. These are identical to field definitions within a struct.

5.7.1. Responses

If the effect of a control is communicated with a direct reply, the permitted response(s) are formally defined with the
response element. Multiple response elements within a single control definition indicate alternative replies. Responses
are always sent on the same channel as the initiating control or command.

 <control name="..."
 code="...">
 ...
 <implement role="..." handle="..." />
 ...
 <response name="..."/>
 ...
 <field name="..."
 type="..."/>
 ...
 </control>

Attributes of a response definition:

name The name of the reply control.

5.8. Commands

An AMQP command defines the format and semantics of an acknowledged instruction. Commands are not assumed to
be idempotent, therefore each command is assigned a sequential command-id prior to transmission, and the receiving
peer MUST execute each command in order, and exactly once regardless of how many times it is received.

An AMQP command is encoded into the command segment of an assembly as follows:

• The class-code is placed into the first octet.

• The command-code is placed into the second octet.

• The session.header struct is encoded after the class-code and command-code.

• The command arguments are then encoded as an unsized, untype struct with two octets of packing flags.

 1 OCTET 1 OCTET 2 OCTETS
 +------------+--------------+----------------+---------------+------------+
 | class-code | control-code | session.header | packing-flags | fields ... |
 +------------+--------------+----------------+---------------+------------+

A command is formally defined with the command element:

Formal Notation

55

 <command name="..."
 code="...">
 <field name="..."
 type="..."/>
 ...
 </command>

5.8.1. Results

When commands produce results during execution, the result is defined as a struct and carried by the execution.result
command. The result is always sent on the same channel as the initiating command. The format of a command result
is formally defined with the optional result element:

 <command name="..."
 code="...">
 <field name="..."
 type="..."/>
 ...

 <result type="..."/>
 </command>

Attributes of a result definition:

type Identifies the format of the result. This MUST refer to a coded struct with size="4".

A result definition may also contain the struct definition rather than reference it by name:

 <command name="..."
 code="...">
 <field name="..."
 type="..."/>
 ...

 <result>
 <struct name="..."
 size="4"
 type="..."
 pack="...">
 <field name="..."
 type="..."/>
 ...
 </struct>
 </result>
 </command>

5.8.2. Exceptions

When exceptional conditions occur during command execution, the execution.exception command is used to indicate
that an exception has occured. The exception command is sent on the channel where the problem occurred. The

Formal Notation

56

execution.error-code enum defines error codes for all the defined error conditions that can occur during command
execution.

Exceptional conditions are formally defined with the exception element. These may appear within a command or field
definition:

 <command name="..."
 code="...">
 <exception name="..."
 error-code="..."/>
 ...
 <field name="..."
 type="...">
 <exception name="..."
 error-code="..."/>
 </field>
 ...
 </command>

Attributes of an exception:

name The name of the exception. This uniquely identifies the exceptional condition within the field or
command.

error-code The name of a choice defined within the execution.error-code enum.

5.9. Segments

Specific commands or controls may be defined to carry additional segments. In addition to command segments and
control segments, AMQP defines header and body segments that are used for carrying message content. If permitted,
the presence, contents, and order of these additional segments is formally defined with the segments element:

 <command name="..." ... >
 ...
 <segments>
 <header ... > ... </header>
 <body ... />
 </segments>
 </command>

5.9.1. Header Segment

The contents of a header segment consists of a set of sized (size="4"), coded, packed structs. These are sequentially
encoded into the segment in an undefined order. When parsing the header segment, an implementation MUST assume
that the entries may be in any order, and intermediaries MAY reorder or insert additional entries. A header segment
MUST include at most one instance of each type.

Should an intermediary encounter a struct entry with an unrecognized code, it MUST pass the entry through
unmodified.

Formal Notation

57

 <header required="...">
 <entry type="..." />
 ...
 </header>

required Permitted values: true, false

Defines whether the header segment is always present or may be omitted.

Entry

Each entry in the definition of a header segment refers to a sized (size="4"), coded, packed struct that is permitted to
appear within the segment. An entry is formally defined with the entry element:

 <entry type="...">
 <doc> ... </doc>
 ...
 </entry>

type References a valid struct by name:

• The struct MUST include a 32 bit size, size="4".

• The struct MUST be coded.

5.9.2. Body Segment

A body segment contains opaque data. It is formally defined with the body element:

 <body required="..." />

Attributes of a body segment:

required Permitted values: true, false

Defines whether the body segment is always present or may be omitted from the assembly.

58

6. Constants
Name Value Description

MIN-MAX-
FRAME-SIZE

4096 During the initial connection negotiation, the two peers must agree upon a
maximum frame size. This constant defines the minimum value to which the
maximum frame size can be set. By defining this value, the peers can guarantee
that they can send frames of up to this size until they have agreed a definitive
maximum frame size for that connection.

59

7. Types
Fixed width types

Name Code Width in
Octets

Description

bin8 0x00 1 octet of unspecified encoding

int8 0x01 1 8-bit signed integral value (-128 - 127)

uint8 0x02 1 8-bit unsigned integral value (0 - 255)

char 0x04 1 an iso-8859-15 character

boolean 0x08 1 boolean value (zero represents false, nonzero represents true)

bin16 0x10 2 two octets of unspecified binary encoding

int16 0x11 2 16-bit signed integral value

uint16 0x12 2 16-bit unsigned integer

bin32 0x20 4 four octets of unspecified binary encoding

int32 0x21 4 32-bit signed integral value

uint32 0x22 4 32-bit unsigned integral value

float 0x23 4 single precision IEEE 754 32-bit floating point

char-utf32 0x27 4 single unicode character in UTF-32 encoding

sequence-no 4 serial number defined in RFC-1982

bin64 0x30 8 eight octets of unspecified binary encoding

int64 0x31 8 64-bit signed integral value

uint64 0x32 8 64-bit unsigned integral value

double 0x33 8 double precision IEEE 754 floating point

datetime 0x38 8 datetime in 64 bit POSIX time_t format

bin128 0x40 16 sixteen octets of unspecified binary encoding

uuid 0x48 16 UUID (RFC-4122 section 4.1.2) - 16 octets

bin256 0x50 32 thirty two octets of unspecified binary encoding

bin512 0x60 64 sixty four octets of unspecified binary encoding

bin1024 0x70 128 one hundred and twenty eight octets of unspecified binary encoding

bin40 0xc0 5 five octets of unspecified binary encoding

dec32 0xc8 5 32-bit decimal value (e.g. for use in financial values)

bin72 0xd0 9 nine octets of unspecified binary encoding

dec64 0xd8 9 64-bit decimal value (e.g. for use in financial values)

void 0xf0 0 the void type

bit 0xf1 0 presence indicator

Types

60

Type: bin8

The bin8 type consists of exactly one octet of opaque binary data.

Wire Format

 1 OCTET
 +----------+
 | bin8 |
 +----------+

BNF:

 bin8 = OCTET

Types

61

Type: int8

The int8 type is a signed integral value encoded using an 8-bit two's complement representation.

Wire Format

 1 OCTET
 +----------+
 | int8 |
 +----------+

BNF:

 int8 = OCTET

Types

62

Type: uint8

The uint8 type is an 8-bit unsigned integral value.

Wire Format

 1 OCTET
 +---------+
 | uint8 |
 +---------+

BNF:

 uint8 = OCTET

Types

63

Type: char

The char type encodes a single character from the iso-8859-15 character set.

Wire Format

 1 OCTET
 +----------+
 | char |
 +----------+

BNF:

 char = OCTET

Types

64

Type: boolean

The boolean type is a single octet that encodes a true or false value. If the octet is zero, then the boolean is false. Any
other value represents true.

Wire Format

 1 OCTET
 +---------+
 | boolean |
 +---------+

BNF:

 boolean = OCTET

Types

65

Type: bin16

The bin16 type consists of two consecutive octets of opaque binary data.

Wire Format

 1 OCTET 1 OCTET
 +-----------+-----------+
 | octet-one | octet-two |
 +-----------+-----------+

BNF:

 bin16 = 2 OCTET

Types

66

Type: int16

The int16 type is a signed integral value encoded using a 16-bit two's complement representation in network byte order.

Wire Format

 1 OCTET 1 OCTET
 +-----------+----------+
 | high-byte | low-byte |
 +-----------+----------+

BNF:

 int16 = high-byte low-byte
 high-byte = OCTET
 low-byte = OCTET

Types

67

Type: uint16

The uint16 type is a 16-bit unsigned integral value encoded in network byte order.

Wire Format

 1 OCTET 1 OCTET
 +-----------+----------+
 | high-byte | low-byte |
 +-----------+----------+

BNF:

 uint16 = high-byte low-byte
 high-byte = OCTET
 low-byte = OCTET

Types

68

Type: bin32

The bin32 type consists of 4 consecutive octets of opaque binary data.

Wire Format

 1 OCTET 1 OCTET 1 OCTET 1 OCTET
 +-----------+-----------+-------------+------------+
 | octet-one | octet-two | octet-three | octet-four |
 +-----------+-----------+-------------+------------+

BNF:

 bin32 = 4 OCTET

Types

69

Type: int32

The int32 type is a signed integral value encoded using a 32-bit two's complement representation in network byte order.

Wire Format

 1 OCTET 1 OCTET 1 OCTET 1 OCTET
 +-----------+------------+----------+----------+
 | byte-four | byte-three | byte-two | byte-one |
 +-----------+------------+----------+----------+
 MSB LSB

BNF:

 int32 = byte-four byte-three byte-two byte-one
 byte-four = OCTET ; most significant byte (MSB)
 byte-three = OCTET
 byte-two = OCTET
 byte-one = OCTET ; least significant byte (LSB)

Types

70

Type: uint32

The uint32 type is a 32-bit unsigned integral value encoded in network byte order.

Wire Format

 1 OCTET 1 OCTET 1 OCTET 1 OCTET
 +-----------+------------+----------+----------+
 | byte-four | byte-three | byte-two | byte-one |
 +-----------+------------+----------+----------+
 MSB LSB

BNF:

 uint32 = byte-four byte-three byte-two byte-one
 byte-four = OCTET ; most significant byte (MSB)
 byte-three = OCTET
 byte-two = OCTET
 byte-one = OCTET ; least significant byte (LSB)

Types

71

Type: float

The float type encodes a single precision 32-bit floating point number. The format and operations are defined by the
IEEE 754 standard for 32-bit floating point numbers.

Wire Format

 4 OCTETs
 +-----------------------+
 | float |
 +-----------------------+
 IEEE 754 32-bit float

BNF:

 float = 4 OCTET ; IEEE 754 32-bit floating point number

Types

72

Type: char-utf32

The char-utf32 type consists of a single unicode character in the UTF-32 encoding.

Wire Format

 4 OCTETs
 +------------------+
 | char-utf32 |
 +------------------+
 UTF-32 character

BNF:

 char-utf32 = 4 OCTET ; single UTF-32 character

Types

73

Type: sequence-no

The sequence-no type encodes, in network byte order, a serial number as defined in RFC-1982. The arithmetic,
operators, and ranges for numbers of this type are defined by RFC-1982.

Wire Format

 4 OCTETs
 +------------------------+
 | sequence-no |
 +------------------------+
 RFC-1982 serial number

BNF:

 sequence-no = 4 OCTET ; RFC-1982 serial number

Types

74

Type: bin64

The bin64 type consists of eight consecutive octets of opaque binary data.

Wire Format

 1 OCTET 1 OCTET 1 OCTET 1 OCTET
 +-----------+-----------+-----+-------------+-------------+
 | octet-one | octet-two | ... | octet-seven | octet-eight |
 +-----------+-----------+-----+-------------+-------------+

BNF:

 bin64 = 8 OCTET

Types

75

Type: int64

The int64 type is a signed integral value encoded using a 64-bit two's complement representation in network byte order.

Wire Format

 1 OCTET 1 OCTET 1 OCTET 1 OCTET
 +------------+------------+-----+----------+----------+
 | byte-eight | byte-seven | ... | byte-two | byte-one |
 +------------+------------+-----+----------+----------+
 MSB LSB

BNF:

 int64 = byte-eight byte-seven byte-six byte-five
 byte-four byte-three byte-two byte-one
 byte-eight = 1 OCTET ; most significant byte (MSB)
 byte-seven = 1 OCTET
 byte-six = 1 OCTET
 byte-five = 1 OCTET
 byte-four = 1 OCTET
 byte-three = 1 OCTET
 byte-two = 1 OCTET
 byte-one = 1 OCTET ; least significant byte (LSB)

Types

76

Type: uint64

The uint64 type is a 64-bit unsigned integral value encoded in network byte order.

Wire Format

 1 OCTET 1 OCTET 1 OCTET 1 OCTET
 +------------+------------+-----+----------+----------+
 | byte-eight | byte-seven | ... | byte-two | byte-one |
 +------------+------------+-----+----------+----------+
 MSB LSB

BNF:

 uint64 = byte-eight byte-seven byte-six byte-five
 byte-four byte-three byte-two byte-one
 byte-eight = 1 OCTET ; most significant byte (MSB)
 byte-seven = 1 OCTET
 byte-six = 1 OCTET
 byte-five = 1 OCTET
 byte-four = 1 OCTET
 byte-three = 1 OCTET
 byte-two = 1 OCTET
 byte-one = 1 OCTET ; least significant byte (LSB)

Types

77

Type: double

The double type encodes a double precision 64-bit floating point number. The format and operations are defined by
the IEEE 754 standard for 64-bit double precision floating point numbers.

Wire Format

 8 OCTETs
 +-----------------------+
 | double |
 +-----------------------+
 IEEE 754 64-bit float

BNF:

 double = 8 OCTET ; double precision IEEE 754 floating point number

Types

78

Type: datetime

The datetime type encodes a date and time using the 64 bit POSIX time_t format.

Wire Format

 8 OCTETs
 +---------------------+
 | datetime |
 +---------------------+
 posix time_t format

BNF:

 datetime = 8 OCTET ; 64 bit posix time_t format

Types

79

Type: bin128

The bin128 type consists of 16 consecutive octets of opaque binary data.

Wire Format

 1 OCTET 1 OCTET 1 OCTET 1 OCTET
 +-----------+-----------+-----+---------------+---------------+
 | octet-one | octet-two | ... | octet-fifteen | octet-sixteen |
 +-----------+-----------+-----+---------------+---------------+

BNF:

 bin128 = 16 OCTET

Types

80

Type: uuid

The uuid type encodes a universally unique id as defined by RFC-4122. The format and operations for this type can
be found in section 4.1.2 of RFC-4122.

Wire Format

 16 OCTETs
 +---------------+
 | uuid |
 +---------------+
 RFC-4122 UUID

BNF:

 uuid = 16 OCTET ; RFC-4122 section 4.1.2

Types

81

Type: bin256

The bin256 type consists of thirty two consecutive octets of opaque binary data.

Wire Format

 1 OCTET 1 OCTET 1 OCTET 1 OCTET
 +-----------+-----------+-----+------------------+------------------+
 | octet-one | octet-two | ... | octet-thirty-one | octet-thirty-two |
 +-----------+-----------+-----+------------------+------------------+

BNF:

 bin256 = 32 OCTET

Types

82

Type: bin512

The bin512 type consists of sixty four consecutive octets of opaque binary data.

Wire Format

 1 OCTET 1 OCTET 1 OCTET 1 OCTET
 +-----------+-----------+-----+-------------------+------------------+
 | octet-one | octet-two | ... | octet-sixty-three | octet-sixty-four |
 +-----------+-----------+-----+-------------------+------------------+

BNF:

 bin512 = 64 OCTET

Types

83

Type: bin1024

The bin1024 type consists of one hundred and twenty eight octets of opaque binary data.

Wire Format

 1 OCTET 1 OCTET 1 OCTET 1 OCTET
 +-----------+-----------+-----+------------------------+------------------------+
 | octet-one | octet-two | ... | octet-one-twenty-seven | octet-one-twenty-eight |
 +-----------+-----------+-----+------------------------+------------------------+

BNF:

 bin1024 = 128 OCTET

Types

84

Type: bin40

The bin40 type consists of five consecutive octets of opaque binary data.

Wire Format

 1 OCTET 1 OCTET 1 OCTET 1 OCTET 1 OCTET
 +-----------+-----------+-------------+------------+------------+
 | octet-one | octet-two | octet-three | octet-four | octet-five |
 +-----------+-----------+-------------+------------+------------+

BNF:

 bin40 = 5 OCTET

Types

85

Type: dec32

The dec32 type is decimal value with a variable number of digits following the decimal point. It is encoded as an 8-
bit unsigned integral value representing the number of decimal places. This is followed by the signed integral value
encoded using a 32-bit two's complement representation in network byte order.

The former value is referred to as the exponent of the divisor. The latter value is the mantissa. The decimal value is
given by: mantissa / 10^exponent.

Wire Format

 1 OCTET 4 OCTETs
 +----------+----------+
 | exponent | mantissa |
 +----------+----------+
 uint8 int32

BNF:

 dec32 = exponent mantissa
 exponent = uint8
 mantissa = int32

Types

86

Type: bin72

The bin72 type consists of nine consecutive octets of opaque binary data.

Wire Format

 1 OCTET 1 OCTET 1 OCTET 1 OCTET
 +-----------+-----------+-----+-------------+------------+
 | octet-one | octet-two | ... | octet-eight | octet-nine |
 +-----------+-----------+-----+-------------+------------+

BNF:

 bin64 = 9 OCTET

Types

87

Type: dec64

The dec64 type is decimal value with a variable number of digits following the decimal point. It is encoded as an 8-
bit unsigned integral value representing the number of decimal places. This is followed by the signed integral value
encoded using a 64-bit two's complement representation in network byte order.

The former value is referred to as the exponent of the divisor. The latter value is the mantissa. The decimal value is
given by: mantissa / 10^exponent.

Wire Format

 1 OCTET 8 OCTETs
 +----------+----------+
 | exponent | mantissa |
 +----------+----------+
 uint8 int64

BNF:

 dec64 = exponent mantissa
 exponent = uint8
 mantissa = int64

Types

88

Type: void

The void type is used within tagged data structures such as maps and lists to indicate an empty value. The void type
has no value and is encoded as an empty sequence of octets.

Types

89

Type: bit

The bit type is used to indicate that a packing flag within a packed struct is being used to represent a boolean value
based on the presence of an empty value. The bit type has no value and is encoded as an empty sequence of octets.

Types

90

Variable width types

Variable width types consist of a number of octets which represent an unsgigned integral size; followed by the given
number of octets. The size field should be read as if it were a uint8, if there is one size octet, as a uint16 if there are
two size octets, a unit32 if there are four size octets, and so on.

Name Code Size Octets Description

vbin8 0x80 1 up to 255 octets of opaque binary data

str8-latin 0x84 1 up to 255 iso-8859-15 characters

str8 0x85 1 up to 255 octets worth of UTF-8 unicode

str8-utf16 0x86 1 up to 255 octets worth of UTF-16 unicode

vbin16 0x90 2 up to 65535 octets of opaque binary data

str16-latin 0x94 2 up to 65535 iso-8859-15 characters

str16 0x95 2 up to 65535 octets worth of UTF-8 unicode

str16-utf16 0x96 2 up to 65535 octets worth of UTF-16 unicode

byte-ranges 2 byte ranges within a 64-bit payload

sequence-set 2 ranged set representation

vbin32 0xa0 4 up to 4294967295 octets of opaque binary data

map 0xa8 4 a mapping of keys to typed values

list 0xa9 4 a series of consecutive type-value pairs

array 0xaa 4 a defined length collection of values of a single type

struct32 0xab 4 a coded struct with a 32-bit size

Types

91

Type: vbin8

The vbin8 type encodes up to 255 octets of opaque binary data. The number of octets is first encoded as an 8-bit
unsigned integral value. This is followed by the actual data.

Wire Format

 1 OCTET size OCTETs
 +---------+-------------+
 | size | octets |
 +---------+-------------+
 uint8

BNF:

 vbin8 = size octets
 size = uint8
 octets = 0*255 OCTET ; size OCTETs

Types

92

Type: str8-latin

The str8-latin type encodes up to 255 octets of iso-8859-15 characters. The number of octets is first encoded as an 8-
bit unsigned integral value. This is followed by the actual characters.

Wire Format

 1 OCTET size OCTETs
 +---------+------------------------+
 | size | characters |
 +---------+------------------------+
 uint16 iso-8859-15 characters

BNF:

 str8-latin = size characters
 size = uint8
 characters = 0*255 OCTET ; size OCTETs

Types

93

Type: str8

The str8 type encodes up to 255 octets worth of UTF-8 unicode. The number of octets of unicode is first encoded
as an 8-bit unsigned integral value. This is followed by the actual UTF-8 unicode. Note that the encoded size refers
to the number of octets of unicode, not necessarily the number of characters since the UTF-8 unicode may include
multi-byte character sequences.

Wire Format

 1 OCTET size OCTETs
 +---------+--------------+
 | size | utf8-unicode |
 +---------+--------------+
 uint8

BNF:

 str8 = size utf8-unicode
 size = uint8
 utf8-unicode = 0*255 OCTET ; size OCTETs

Types

94

Type: str8-utf16

The str8-utf16 type encodes up to 255 octets worth of UTF-16 unicode. The number of octets of unicode is first encoded
as an 8-bit unsigned integral value. This is followed by the actual UTF-16 unicode. Note that the encoded size refers
to the number of octets of unicode, not the number of characters since the UTF-16 unicode will include at least two
octets per unicode character.

Wire Format

 1 OCTET size OCTETs
 +---------+---------------+
 | size | utf16-unicode |
 +---------+---------------+
 uint8

BNF:

 str8-utf16 = size utf16-unicode
 size = uint8
 utf16-unicode = 0*255 OCTET ; size OCTETs

Types

95

Type: vbin16

The vbin16 type encodes up to 65535 octets of opaque binary data. The number of octets is first encoded as a 16-bit
unsigned integral value in network byte order. This is followed by the actual data.

Wire Format

 2 OCTETs size OCTETs
 +----------+-------------+
 | size | octets |
 +----------+-------------+
 uint16

BNF:

 vbin16 = size octets
 size = uint16
 octets = 0*65535 OCTET ; size OCTETs

Types

96

Type: str16-latin

The str16-latin type encodes up to 65535 octets of is-8859-15 characters. The number of octets is first encoded as a
16-bit unsigned integral value in network byte order. This is followed by the actual characters.

Wire Format

 2 OCTETs size OCTETs
 +----------+------------------------+
 | size | characters |
 +----------+------------------------+
 uint16 iso-8859-15 characters

BNF:

 str16-latin = size characters
 size = uint16
 characters = 0*65535 OCTET ; size OCTETs

Types

97

Type: str16

The str16 type encodes up to 65535 octets worth of UTF-8 unicode. The number of octets is first encoded as a 16-bit
unsigned integral value in network byte order. This is followed by the actual UTF-8 unicode. Note that the encoded size
refers to the number of octets of unicode, not necessarily the number of unicode characters since the UTF-8 unicode
may include multi-byte character sequences.

Wire Format

 2 OCTETs size OCTETs
 +----------+--------------+
 | size | utf8-unicode |
 +----------+--------------+
 uint16

BNF:

 str16 = size utf8-unicode
 size = uint16
 utf8-unicode = 0*65535 OCTET ; size OCTETs

Types

98

Type: str16-utf16

The str16-utf16 type encodes up to 65535 octets worth of UTF-16 unicode. The number of octets is first encoded as
a 16-bit unsigned integral value in network byte order. This is followed by the actual UTF-16 unicode. Note that the
encoded size refers to the number of octets of unicode, not the number of unicode characters since the UTF-16 unicode
will include at least two octets per unicode character.

Wire Format

 2 OCTETs size OCTETs
 +----------+---------------+
 | size | utf16-unicode |
 +----------+---------------+
 uint16

BNF:

 str16-utf16 = size utf16-unicode
 size = uint16
 utf16-unicode = 0*65535 OCTET ; size OCTETs

Types

99

Type: byte-ranges

The byte-ranges type encodes up to 65535 octets worth of non-overlapping, non-touching, ascending byte ranges
within a 64-bit sequence of bytes. Each range is represented as an inclusive lower and upper bound that identifies all
the byte offsets included within a given range.

The number of octets of data is first encoded as a 16-bit unsigned integral value in network byte order. This is then
followed by the encoded representation of the ranges included in the set. These MUST be encoded in ascending order,
and any two ranges included in a given set MUST NOT include overlapping or touching byte offsets.

Each range is encoded as a pair of 64-bit unsigned integral values in network byte order respectively representing
the lower and upper bounds for that range. Note that because each range is exactly 16 octets, the size in octets of the
encoded ranges will always be 16 times the number of ranges in the set.

Wire Format

 +----= size OCTETs =----+
 | |
 2 OCTETs | 16 OCTETs |
 +----------+-----+-----------+-----+
 | size | .../| range |\... |
 +----------+---/ +-----------+ \---+
 uint16 / / \ \
 / / \ \
 / 8 OCTETs 8 OCTETs \
 +-----------+-----------+
 | lower | upper |
 +-----------+-----------+
 uint64 uint64

BNF:

 byte-ranges = size *range
 size = uint16
 range = lower upper
 lower = uint64
 upper = uint64

Types

100

Type: sequence-set

The sequence-set type is a set of pairs of RFC-1982 numbers representing a discontinuous range within an RFC-1982
sequence. Each pair represents a closed interval within the list.

Sequence-sets can be represented as lists of pairs of positive 32-bit numbers, each pair representing a closed interval
that does not overlap or touch with any other interval in the list. For example, a set containing words 0, 1, 2, 5, 6,
and 15 can be represented:

 [(0, 2), (5, 6), (15, 15)]

1) The list-of-pairs representation is sorted ascending (as defined by RFC 1982 (http://www.ietf.org/rfc/rfc1982.txt))
by the first elements of each pair.

2) The list-of-pairs is flattened into a list-of-words.

3) Each word in the list is packed into ascending locations in memory with network byte ordering.

4) The size in bytes, represented as a 16-bit network-byte-order unsigned value, is prepended.

For instance, the example from above would be encoded:

 [(0, 2), (5, 6), (15, 15)] -- already sorted.
 [0, 2, 5, 6, 15, 15] -- flattened.
 000000000000000200000005000000060000000F0000000F -- bytes in hex
 0018000000000000000200000005000000060000000F0000000F -- bytes in hex,
 length (24) prepended

Wire Format

 +----= size OCTETs =----+
 | |
 2 OCTETs | 8 OCTETs |
 +----------+-----+-----------+-----+
 | size | .../| range |\... |
 +----------+---/ +-----------+ \---+
 uint16 / / \ \
 / / \ \
 / / \ \
 / / \ \
 / 4 OCTETs 4 OCTETs \
 +-------------+-------------+
 | lower | upper |
 +-------------+-------------+
 sequence-no sequence-no

BNF:

 sequence-set = size *range
 size = uint16 ; length of variable portion in bytes

 range = lower upper ; inclusive
 lower = sequence-no
 upper = sequence-no

Types

101

Type: vbin32

The vbin32 type encodes up to 4294967295 octets of opaque binary data. The number of octets is first encoded as a
32-bit unsigned integral value in network byte order. This is followed by the actual data.

Wire Format

 4 OCTETs size OCTETs
 +----------+-------------+
 | size | octets |
 +----------+-------------+
 uint32

BNF:

 vbin32 = size octets
 size = uint32
 octets = 0*4294967295 OCTET ; size OCTETs

Types

102

Type: map

A map is a set of distinct keys where each key has an associated (type,value) pair. The triple of the key, type, and
value, form an entry within a map. Each entry within a given map MUST have a distinct key. A map is encoded as a
size in octets, a count of the number of entries, followed by the encoded entries themselves.

An encoded map may contain up to (4294967295 - 4) octets worth of encoded entries. The size is encoded as a 32-bit
unsigned integral value in network byte order equal to the number of octets worth of encoded entries plus 4. (The extra
4 octets is added for the entry count.) The size is then followed by the number of entries encoded as a 32-bit unsigned
integral value in network byte order. Finally the entries are encoded sequentially.

An entry is encoded as the key, followed by the type, and then the value. The key is always a string encoded as a str8.
The type is a single octet that may contain any valid AMQP type code. The value is encoded according to the rules
defined by the type code for that entry.

Wire Format

 +------------= size OCTETs =-----------+
 | |
 4 OCTETs | 4 OCTETs |
 +----------+----------+-----+---------------+-----+
 | size | count | .../| entry |\... |
 +----------+----------+---/ +---------------+ \---+
 uint32 uint32 / / \ \
 / / \ \
 / / \ \
 / / \ \
 / / \ \
 / k OCTETs 1 OCTET n OCTETs \
 +-----------+---------+-----------+
 | key | type | value |
 +-----------+---------+-----------+
 str8 *type*

BNF:

 map = size count *entry

 size = uint32 ; size of count and entries in octets
 count = uint32 ; number of entries in the map

 entry = key type value
 key = str8
 type = OCTET ; type code of the value
 value = *OCTET ; the encoded value

Types

103

Type: list

A list is an ordered sequence of (type, value) pairs. The (type, value) pair forms an item within the list. The list may
contain items of many distinct types. A list is encoded as a size in octets, followed by a count of the number of items,
followed by the items themselves encoded in their defined order.

An encoded list may contain up to (4294967295 - 4) octets worth of encoded items. The size is encoded as a 32-bit
unsigned integral value in network byte order equal to the number of octets worth of encoded items plus 4. (The extra
4 octets is added for the item count.) The size is then followed by the number of items encoded as a 32-bit unsigned
integral value in network byte order. Finally the items are encoded sequentially in their defined order.

An item is encoded as the type followed by the value. The type is a single octet that may contain any valid AMQP
type code. The value is encoded according to the rules defined by the type code for that item.

Wire Format

 +---------= size OCTETs =---------+
 | |
 4 OCTETs | 4 OCTETs |
 +----------+----------+-----+----------+-----+
 | size | count | .../| item |\... |
 +----------+----------+---/ +----------+ \---+
 uint32 uint32 / / \ \
 / / \ \
 / 1 OCTET n OCTETs \
 +----------+-----------+
 | type | value |
 +----------+-----------+
 type

BNF:

 list = size count *item

 size = uint32 ; size of count and items in octets
 count = uint32 ; number of items in the list

 item = type value
 type = OCTET ; type code of the value
 value = *OCTET ; the encoded value

Types

104

Type: array

An array is an ordered sequence of values of the same type. The array is encoded in as a size in octets, followed by a
type code, then a count of the number values in the array, and finally the values encoded in their defined order.

An encoded array may contain up to (4294967295 - 5) octets worth of encoded values. The size is encoded as a 32-bit
unsigned integral value in network byte order equal to the number of octets worth of encoded values plus 5. (The extra
5 octets consist of 4 octets for the count of the number of values, and one octet to hold the type code for the items in
the array.) The size is then followed by a single octet that may contain any valid AMQP type code. The type code is
then followed by the number of values encoded as a 32-bit unsigned integral value in network byte order. Finally the
values are encoded sequentially in their defined order according to the rules defined by the type code for the array.

Wire Format

 4 OCTETs 1 OCTET 4 OCTETs (size - 5) OCTETs
 +----------+---------+----------+-------------------------+
 | size | type | count | values |
 +----------+---------+----------+-------------------------+
 uint32 uint32 *count* encoded *types*

BNF:

 array = size type count values

 size = uint32 ; size of type, count, and values in octets
 type = OCTET ; the type of the encoded values
 count = uint32 ; number of items in the array

 values = 0*4294967290 OCTET ; (size - 5) OCTETs

Types

105

Type: struct32

The struct32 type describes any coded struct with a 32-bit (4 octet) size. The type is restricted to be only coded structs
with a 32-bit size, consequently the first six octets of any encoded value for this type MUST always contain the size,
class-code, and struct-code in that order.

The size is encoded as a 32-bit unsigned integral value in network byte order that is equal to the size of the encoded
field-data, packing-flags, class-code, and struct-code. The class-code is a single octet that may be set to any valid class
code. The struct-code is a single octet that may be set to any valid struct code within the given class-code.

The first six octets are then followed by the packing flags and encoded field data. The presence and quantity of packing-
flags, as well as the specific fields are determined by the struct definition identified with the encoded class-code and
struct-code.

Wire Format

 4 OCTETs 1 OCTET 1 OCTET pack-width OCTETs n OCTETs
 +----------+------------+-------------+-------------------+------------+
 | size | class-code | struct-code | packing-flags | field-data |
 +----------+------------+-------------+-------------------+------------+
 uint32

 n = (size - 2 - pack-width)

BNF:

 struct32 = size class-code struct-code packing-flags field-data

 size = uint32

 class-code = OCTET ; zero for top-level structs
 struct-code = OCTET ; together with class-code identifies the struct
 ; definition which determines the pack-width and
 ; fields

 packing-flags = 0*4 OCTET ; pack-width OCTETs

 field-data = *OCTET ; (size - 2 - pack-width) OCTETs

Types

106

Mandatory Types

The following types MUST be natively understood by a conforming AMQP Server:

uint8, uint16, uint32, sequence-no, uint64, datetime, uuid, vbin8, str8, vbin16, str16, byte-ranges, sequence-set, vbin32,
map, array, struct32, bit.

Other types are defined for the use of application defined properties which may be passed in the header sections of
messages. Since such values are passed through unchanged by an AMQP server, there is no need for the server to
parse them.

107

8. Domains
Domain: segment-type

Name Type Description

segment-
type

uint8 valid values for the frame type indicator.

Segments are defined in Section 4.4.1, “Assemblies, Segments, and Frames”. The segment domain defines the valid
values that may be used for the segment indicator within the frame header.

Valid Values

Value Name Description

0 control The frame type indicator for Control segments (see Section 5.7, “Controls”).

1 command The frame type indicator for Command segments (see Section 5.8,
“Commands”).

2 header The frame type indicator for Header segments (see Section 5.9.1, “Header
Segment”).

3 body The frame type indicator for Body segments (see Section 5.9.2, “Body
Segment”).

Domains

108

Domain: track

Name Type Description

track uint8 Valid values for transport level tracks

Tracks are defined in Section 4.4.2, “Channels and Tracks”. The track domain defines the valid values that may used
for the track indicator within the frame header

Valid Values

Value Name Description

0 control The track used for all controls. All controls defined in this specification MUST
be sent on track 0.

1 command The track used for all commands. All commands defined in this specification
MUST be sent on track 1.

Domains

109

Domain: str16-array

Name Type Description

str16-array array An array of values of type str16.

An array of values of type str16.

110

9. Control Classes

Class: connection

CodeName Description

0x1 connection work with connections

An AMQP server MUST implement the connection class.

An AMQP client MUST implement the connection class.

Methods

Code Name

start(server-properties: map, mechanisms: str16-array, locales: str16-array)0x1

start connection negotiation

start-ok(client-properties: map, mechanism: str8, response: vbin32, locale: str8)0x2

select security mechanism and locale

secure(challenge: vbin32)0x3

security mechanism challenge

secure-ok(response: vbin32)0x4

security mechanism response

tune(channel-max: uint16, max-frame-size: uint16, heartbeat-min: uint16, heartbeat-max: uint16)0x5

propose connection tuning parameters

tune-ok(channel-max: uint16, max-frame-size: uint16, heartbeat: uint16)0x6

negotiate connection tuning parameters

open(virtual-host: str8, capabilities: str16-array, insist: bit)0x7

open connection to virtual host

open-ok(known-hosts: amqp-host-array)0x8

signal that connection is ready

redirect(host: amqp-host-url, known-hosts: amqp-host-array)0x9

redirects client to other server

heartbeat()0xa

indicates connection is still alive

close(reply-code: close-code, reply-text: str8)0xb

request a connection close

close-ok()0xc

confirm a connection close

The connection class provides controls for a client to establish a network connection to a server, and for both peers
to operate the connection thereafter.

Control Classes

111

Grammar:

 connection = open-connection
 *use-connection
 close-connection
 open-connection = C:protocol-header
 S:START C:START-OK
 *challenge
 S:TUNE C:TUNE-OK
 C:OPEN S:OPEN-OK | S:REDIRECT
 challenge = S:SECURE C:SECURE-OK
 use-connection = *channel
 close-connection = C:CLOSE S:CLOSE-OK
 / S:CLOSE C:CLOSE-OK

Control Classes

112

Domain: connection.close-code

Name Type Description

close-code uint16 code used in the connection.close control to indicate reason for closure

Valid Values

Value Name Description

200 normal The connection closed normally.

320 connection-
forced

An operator intervened to close the connection for some reason. The client may
retry at some later date.

402 invalid-
path

The client tried to work with an unknown virtual host.

501 framing-
error

A valid frame header cannot be formed from the incoming byte stream.

Control Classes

113

Domain: connection.amqp-host-url

Name Type Description

amqp-host-
url

str16 URL for identifying an AMQP Server

The amqp-url domain defines a format for identifying an AMQP Server. It is used to provide alternate hosts in the
case where a client has to reconnect because of failure, or because the server requests the client to do so upon initial
connection.

BNF:

 amqp_url = "amqp:" prot_addr_list
 prot_addr_list = [prot_addr ","]* prot_addr
 prot_addr = tcp_prot_addr | tls_prot_addr

 tcp_prot_addr = tcp_id tcp_addr
 tcp_id = "tcp:" | ""
 tcp_addr = [host [":" port]]
 host = <as per http://www.ietf.org/rfc/rfc3986.txt>
 port = number

Control Classes

114

Domain: connection.amqp-host-array

Name Type Description

amqp-host-
array

array An array of values of type amqp-host-url

Used to provide a list of alternate hosts.

Control Classes

115

Control: connection.start

Name start

Code 0x1

Response start-ok

An AMQP client MUST handle incoming connection.start controls.

This control starts the connection negotiation process by telling the client the supported security mechanisms and
locales from which the client can choose.

Arguments

Name Type Description

server-
properties

map server properties optional

str16-array available security mechanisms requiredmechanisms

A list of the security mechanisms that the server supports.

str16-array available message locales requiredlocales

A list of the message locales that the server supports. The locale defines the language in which the
server will send reply texts.

Rules

Rule: protocol-name

If the server cannot support the protocol specified in the protocol header, it MUST close the socket connection
without sending any response control.

Scenario: The client sends a protocol header containing an invalid protocol name. The server must
respond by closing the connection.

Rule: client-support

If the client cannot handle the protocol version suggested by the server it MUST close the socket connection.

Scenario: The server sends a protocol version that is lower than any valid implementation, e.g. 0.1. The
client must respond by closing the connection.

Rule: required-fields

The properties SHOULD contain at least these fields: "host", specifying the server host name or address,
"product", giving the name of the server product, "version", giving the name of the server version, "platform",
giving the name of the operating system, "copyright", if appropriate, and "information", giving other general
information.

Scenario: Client connects to server and inspects the server properties. It checks for the presence of the
required fields.

Control Classes

116

Rule: required-support

The server MUST support at least the en_US locale.

Scenario: Client connects to server and inspects the locales field. It checks for the presence of the required
locale(s).

Control Classes

117

Control: connection.start-ok

Name start-ok

Code 0x2

An AMQP server MUST handle incoming connection.start-ok controls.

This control selects a SASL security mechanism.

Arguments

Name Type Description

client-
properties

map client properties optional

str8 selected security mechanism requiredmechanism

A single security mechanisms selected by the client, which must be one of those specified by the
server.

vbin32 security response data requiredresponse

A block of opaque data passed to the security mechanism. The contents of this data are defined by
the SASL security mechanism.

str8 selected message locale requiredlocale

A single message locale selected by the client, which must be one of those specified by the server.

Rules

Rule: required-fields

The properties SHOULD contain at least these fields: "product", giving the name of the client product,
"version", giving the name of the client version, "platform", giving the name of the operating system,
"copyright", if appropriate, and "information", giving other general information.

Rule: security

The client SHOULD authenticate using the highest-level security profile it can handle from the list provided
by the server.

Rule: validity

If the mechanism field does not contain one of the security mechanisms proposed by the server in the Start
control, the server MUST close the connection without sending any further data.

Scenario: Client connects to server and sends an invalid security mechanism. The server must respond
by closing the connection (a socket close, with no connection close negotiation).

Control Classes

118

Control: connection.secure

Name secure

Code 0x3

Response secure-ok

An AMQP client MUST handle incoming connection.secure controls.

The SASL protocol works by exchanging challenges and responses until both peers have received sufficient
information to authenticate each other. This control challenges the client to provide more information.

Arguments

Name Type Description

vbin32 security challenge data requiredchallenge

Challenge information, a block of opaque binary data passed to the security mechanism.

Control Classes

119

Control: connection.secure-ok

Name secure-ok

Code 0x4

An AMQP server MUST handle incoming connection.secure-ok controls.

This control attempts to authenticate, passing a block of SASL data for the security mechanism at the server side.

Arguments

Name Type Description

vbin32 security response data requiredresponse

A block of opaque data passed to the security mechanism. The contents of this data are defined by
the SASL security mechanism.

Control Classes

120

Control: connection.tune

Name tune

Code 0x5

Response tune-ok

An AMQP client MUST handle incoming connection.tune controls.

This control proposes a set of connection configuration values to the client. The client can accept and/or adjust these.

Arguments

Name Type Description

uint16 proposed maximum channels optionalchannel-max

The maximum total number of channels that the server allows per connection. If this is not set it
means that the server does not impose a fixed limit, but the number of allowed channels may be
limited by available server resources.

uint16 proposed maximum frame size optionalmax-frame-
size The largest frame size that the server proposes for the connection. The client can negotiate a lower

value. If this is not set means that the server does not impose any specific limit but may reject very
large frames if it cannot allocate resources for them.

uint16 the minimum supported heartbeat delay optionalheartbeat-
min The minimum delay, in seconds, of the connection heartbeat supported by the server. If this is not

set it means the server does not support sending heartbeats.

uint16 the maximum supported heartbeat delay optionalheartbeat-
max The maximum delay, in seconds, of the connection heartbeat supported by the server. If this is not

set it means the server has no maximum.

Rules

Rule: minimum

Until the max-frame-size has been negotiated, both peers MUST accept frames of up to MIN-MAX-FRAME-
SIZE octets large, and the minimum negotiated value for max-frame-size is also MIN-MAX-FRAME-SIZE.

Scenario: Client connects to server and sends a large properties field, creating a frame of MIN-MAX-
FRAME-SIZE octets. The server must accept this frame.

Rule: permitted-range

The heartbeat-max value must be greater than or equal to the value supplied in the heartbeat-min field.

Rule: no-heartbeat-min

If no heartbeat-min is supplied, then the heartbeat-max field MUST remain empty.

Control Classes

121

Control: connection.tune-ok

Name tune-ok

Code 0x6

An AMQP server MUST handle incoming connection.tune-ok controls.

This control sends the client's connection tuning parameters to the server. Certain fields are negotiated, others provide
capability information.

Arguments

Name Type Description

uint16 negotiated maximum channels requiredchannel-max

The maximum total number of channels that the client will use per connection.

uint16 negotiated maximum frame size optionalmax-frame-
size The largest frame size that the client and server will use for the connection. If it is not set means that

the client does not impose any specific limit but may reject very large frames if it cannot allocate
resources for them. Note that the max-frame-size limit applies principally to content frames, where
large contents can be broken into frames of arbitrary size.

uint16 negotiated heartbeat delay optionalheartbeat

The delay, in seconds, of the connection heartbeat chosen by the client. If it is not set it means the
client does not want a heartbeat.

Rules

Rule: upper-limit

If the client specifies a channel max that is higher than the value provided by the server, the server MUST
close the connection without attempting a negotiated close. The server may report the error in some fashion
to assist implementers.

Rule: available-channels

If the client agrees to a channel-max of N channels, then the channels available for communication between
client and server are precisely the channels numbered 0 to (N-1).

Rule: minimum

Until the max-frame-size has been negotiated, both peers MUST accept frames of up to MIN-MAX-FRAME-
SIZE octets large, and the minimum negotiated value for max-frame-size is also MIN-MAX-FRAME-SIZE.

Rule: upper-limit

If the client specifies a max-frame-size that is higher than the value provided by the server, the server MUST
close the connection without attempting a negotiated close. The server may report the error in some fashion
to assist implementers.

Control Classes

122

Rule: max-frame-size

A peer MUST NOT send frames larger than the agreed-upon size. A peer that receives an oversized frame
MUST close the connection with the framing-error close-code.

Rule: permitted-range

The chosen heartbeat MUST be in the range supplied by the heartbeat-min and heartbeat-max fields of
connection.tune.

Rule: no-heartbeat-min

The heartbeat field MUST NOT be set if the heartbeat-min field of connection.tune was not set by the server.

Control Classes

123

Control: connection.open

Name open

Code 0x7

Response open-ok

Response redirect

An AMQP server MUST handle incoming connection.open controls.

This control opens a connection to a virtual host, which is a collection of resources, and acts to separate multiple
application domains within a server. The server may apply arbitrary limits per virtual host, such as the number of each
type of entity that may be used, per connection and/or in total.

Arguments

Name Type Description

str8 virtual host name requiredvirtual-
host The name of the virtual host to work with.

str16-array required capabilities optionalcapabilities

The client can specify zero or more capability names. The server can use this to determine how to
process the client's connection request.

bit insist on connecting to server optionalinsist

In a configuration with multiple collaborating servers, the server may respond to a connection.open
control with a Connection.Redirect. The insist option tells the server that the client is insisting on
a connection to the specified server.

Rules

Rule: separation

If the server supports multiple virtual hosts, it MUST enforce a full separation of exchanges, queues, and
all associated entities per virtual host. An application, connected to a specific virtual host, MUST NOT be
able to access resources of another virtual host.

Rule: security

The server SHOULD verify that the client has permission to access the specified virtual host.

Rule: behavior

When the client uses the insist option, the server MUST NOT respond with a Connection.Redirect control.
If it cannot accept the client's connection request it should respond by closing the connection with a suitable
reply code.

Control Classes

124

Control: connection.open-ok

Name open-ok

Code 0x8

An AMQP client MUST handle incoming connection.open-ok controls.

This control signals to the client that the connection is ready for use.

Arguments

Name Type Description

amqp-host-
array

alternate hosts which may be used in the case of failure optionalknown-hosts

Specifies an array of equivalent or alternative hosts that the server knows about, which will normally
include the current server itself. Each entry in the array will be in the form of an IP address or DNS
name, optionally followed by a colon and a port number. Clients can cache this information and
use it when reconnecting to a server after a failure. This field may be empty.

Control Classes

125

Control: connection.redirect

Name redirect

Code 0x9

An AMQP client MUST handle incoming connection.redirect controls.

This control redirects the client to another server, based on the requested virtual host and/or capabilities.

Arguments

Name Type Description

amqp-host-
url

server to connect to requiredhost

Specifies the server to connect to.

amqp-host-
array

alternate hosts to try in case of failure optionalknown-hosts

An array of equivalent or alternative hosts that the server knows about.

Rules

Rule: usage

When getting the connection.redirect control, the client SHOULD reconnect to the host specified, and if that
host is not present, to any of the hosts specified in the known-hosts list.

Control Classes

126

Control: connection.heartbeat

Name heartbeat

Code 0xa

The heartbeat control may be used to generate artificial network traffic when a connection is idle. If a connection is
idle for more than twice the negotiated heartbeat delay, the peers MAY be considered disconnected.

Control Classes

127

Control: connection.close

Name close

Code 0xb

Response close-ok

An AMQP client MUST handle incoming connection.close controls.

An AMQP server MUST handle incoming connection.close controls.

This control indicates that the sender wants to close the connection. The reason for close is indicated with the reply-
code and reply-text. The channel this control is sent on MAY be used to indicate which channel caused the connection
to close.

Arguments

Name Type Description

close-code the numeric reply code requiredreply-code

Indicates the reason for connection closure.

str8 the localized reply text optionalreply-text

This text can be logged as an aid to resolving issues.

Control Classes

128

Control: connection.close-ok

Name close-ok

Code 0xc

An AMQP client MUST handle incoming connection.close-ok controls.

An AMQP server MUST handle incoming connection.close-ok controls.

This control confirms a connection.close control and tells the recipient that it is safe to release resources for the
connection and close the socket.

Rules

Rule: reporting

A peer that detects a socket closure without having received a Close-Ok handshake control SHOULD log
the error.

Control Classes

129

Class: session

CodeName Description

0x2 session session controls

An AMQP server MUST implement the session class.

An AMQP client MUST implement the session class.

An AMQP sender MUST implement the session class.

An AMQP receiver MUST implement the session class.

Methods

Code Name

attach(name: name, force: bit)0x1

attach to the named session

attached(name: name)0x2

confirm attachment to the named session

detach(name: name)0x3

detach from the named session

detached(name: name, code: detach-code)0x4

confirm detachment from the named session

request-timeout(timeout: uint32)0x5

requests the execution timeout be changed

timeout(timeout: uint32)0x6

the granted timeout

command-point(command-id: sequence-no, command-offset: uint64)0x7

the command id and byte offset of subsequent data

expected(commands: commands, fragments: command-fragments)0x8

informs the peer of expected commands

confirmed(commands: commands, fragments: command-fragments)0x9

notifies of confirmed commands

completed(commands: commands, timely-reply: bit)0xa

notifies of command completion

known-completed(commands: commands)0xb

Inform peer of which commands are known to be completed

flush(expected: bit, confirmed: bit, completed: bit)0xc

requests a session.completed

gap(commands: commands)0xd

indicates missing segments in the stream

Control Classes

130

A session is a named interaction between two peers. Session names are chosen by the upper layers and may be used
indefinitely. The model layer may associate long-lived or durable state with a given session name. The session layer
provides transport of commands associated with this interaction.

The controls defined within this class are specified in terms of the "sender" of commands and the "receiver" of
commands. Since both client and server send and receive commands, the overall session dialog is symmetric, however
the semantics of the session controls are defined in terms of a single sender/receiver pair, and it is assumed that the
client and server will each contain both a sender and receiver implementation.

Rules

Rule: attachment

The transport MUST be attached in order to use any control other than "attach", "attached", "detach",
or "detached". A peer receiving any other control on a detached transport MUST discard it and send a
session.detached with the "not-attached" reason code.

Control Classes

131

Domain: session.header

The session header appears on commands after the class and command id, but prior to command arguments.

Struct Type

Size Packing

1 1

Fields

Name Type Description

bit request notification of completion optionalsync

Request notification of completion for this command.

Control Classes

132

Domain: session.command-fragment

Struct Type

Size Packing

0 0

Fields

Name Type Description

command-id sequence-no required

byte-ranges byte-ranges required

Control Classes

133

Domain: session.name

Name Type Description

name vbin16 opaque session name

The session name uniquely identifies an interaction between two peers. It is scoped to a given authentication principal.

Control Classes

134

Domain: session.detach-code

Name Type Description

detach-code uint8 reason for detach

Valid Values

Value Name Description

0 normal The session was detached by request.

1 session-
busy

The session is currently attached to another transport.

2 transport-
busy

The transport is currently attached to another session.

3 not-
attached

The transport is not currently attached to any session.

4 unknown-ids Command data was received prior to any use of the command-point control.

Control Classes

135

Domain: session.commands

Name Type Description

commands sequence-
set

identifies a set of commands

Control Classes

136

Domain: session.command-fragments

Name Type Description

command-
fragments

array an array of values of type command-fragment

Control Classes

137

Control: session.attach

Name attach

Code 0x1

Response attached

Response detached

An AMQP server MUST handle incoming session.attach controls.

An AMQP client MAY handle incoming session.attach controls.

Requests that the current transport be attached to the named session. Success or failure will be indicated with an
attached or detached response. This control is idempotent.

Arguments

Name Type Description

name the session name requiredname

Identifies the session to be attached to the current transport.

bit force attachment to a busy session optionalforce

If set then a busy session will be forcibly detached from its other transport and reattached to the
current transport.

Rules

Rule: one-transport-per-session

A session MUST NOT be attached to more than one transport at a time.

Rule: one-session-per-transport

A transport MUST NOT be attached to more than one session at a time.

Rule: idempotence

Attaching a session to its current transport MUST succeed and result in an attached response.

Rule: scoping

Attachment to the same session name from distinct authentication principals MUST succeed.

Control Classes

138

Control: session.attached

Name attached

Code 0x2

An AMQP server MUST handle incoming session.attached controls.

An AMQP client MUST handle incoming session.attached controls.

Confirms successful attachment of the transport to the named session.

Arguments

Name Type Description

name the session name requiredname

Identifies the session now attached to the current transport.

Control Classes

139

Control: session.detach

Name detach

Code 0x3

Response detached

An AMQP server MUST handle incoming session.detach controls.

An AMQP client MUST handle incoming session.detach controls.

Detaches the current transport from the named session.

Arguments

Name Type Description

name the session name requiredname

Identifies the session to detach.

Control Classes

140

Control: session.detached

Name detached

Code 0x4

An AMQP server MUST handle incoming session.detached controls.

An AMQP client MUST handle incoming session.detached controls.

Confirms detachment of the current transport from the named session.

Arguments

Name Type Description

name the session name requiredname

Identifies the detached session.

detach-code the reason for detach requiredcode

Identifies the reason for detaching from the named session.

Control Classes

141

Control: session.request-timeout

Name request-timeout

Code 0x5

Response timeout

An AMQP sender MUST handle incoming session.request-timeout controls.

An AMQP receiver MUST handle incoming session.request-timeout controls.

This control may be sent by either the sender or receiver of commands. It requests that the execution timeout be
changed. This is the minimum amount of time that a peer must preserve execution state for a detached session.

Arguments

Name Type Description

uint32 the requested timeout optionaltimeout

The requested timeout for execution state in seconds. If not set, this control requests that execution
state is preserved indefinitely.

Rules

Rule: maximum-granted-timeout

The handler of this request MUST set his timeout to the maximum allowed value less than or equal to the
requested timeout, and MUST convey the chosen timeout in the response.

Control Classes

142

Control: session.timeout

Name timeout

Code 0x6

An AMQP sender MUST handle incoming session.timeout controls.

An AMQP receiver MUST handle incoming session.timeout controls.

This control may be sent by the either the sender or receiver of commands. It is a one-to-one reply to the request-
timeout control that indicates the granted timeout for execution state.

Arguments

Name Type Description

uint32 the execution timeout optionaltimeout

The timeout for execution state. If not set, then execution state is preserved indefinitely.

Control Classes

143

Control: session.command-point

Name command-point

Code 0x7

An AMQP receiver MUST handle incoming session.command-point controls.

This control is sent by the sender of commands and handled by the receiver of commands. This establishes the sequence
numbers associated with all subsequent command data sent from the sender to the receiver. The subsequent command
data will be numbered starting with the values supplied in this control and proceeding sequentially. This must be used
at least once prior to sending any command data on newly attached transports.

Arguments

Name Type Description

command-id sequence-no the command-id of the next command required

command-
offset

uint64 the byte offset within the command required

Rules

Rule: newly-attached-transports

If command data is sent on a newly attached transport the session MUST be detached with an "unknown-
id" reason-code.

Rule: zero-offset

If the offset is zero, the next data frame MUST have the first-frame and first-segment flags set. Violation
of this is a framing error.

Rule: nonzero-offset

If the offset is nonzero, the next data frame MUST NOT have both the first-frame and first-segment flag
set. Violation of this is a framing error.

Control Classes

144

Control: session.expected

Name expected

Code 0x8

An AMQP sender MUST handle incoming session.expected controls.

This control is sent by the receiver of commands and handled by the sender of commands. It informs the sender of
what commands and command fragments are expected at the receiver. This control is only sent in response to a flush
control with the expected flag set. The expected control is never sent spontaneously.

Arguments

Name Type Description

commands commands expected commands required

fragments command-
fragments

expected fragments optional

Rules

Rule: include-next-command

The set of expected commands MUST include the next command after the highest seen command.

Rule: commands-empty-means-new-session

The set of expected commands MUST have zero elements if and only if the sender holds no execution state
for the session (i.e. it is a new session).

Rule: no-overlaps

If a command-id appears in the commands field, it MUST NOT appear in the fragments field.

Rule: minimal-fragments

When choice is permitted, a command MUST appear in the commands field rather than the fragments field.

Control Classes

145

Control: session.confirmed

Name confirmed

Code 0x9

An AMQP sender MUST handle incoming session.confirmed controls.

This control is sent by the receiver of commands and handled by the sender of commands. This sends the set of
commands that will definitely be completed by this peer to the sender. This excludes commands known by the receiver
to be considered confirmed or complete at the sender.

This control must be sent if the partner requests the set of confirmed commands using the session.flush control with
the confirmed flag set.

This control may be sent spontaneously. One reason for separating confirmation from completion is for large persistent
messages, where the receipt (and storage to a durable store) of part of the message will result in less data needing to
be replayed in the case of transport failure during transmission.

A simple implementation of an AMQP client or server may be implemented to take no action on receipt of
session.confirmed controls, and take action only when receiving session.completed controls.

A simple implementation of an AMQP client or server may be implemented such that it never spontaneously sends
session.confirmed and that when requested for the set of confirmed commands (via the session.flush control) it
responds with the same set of commands as it would to when the set of completed commands was requested (trivially
all completed commands are confirmed).

Arguments

Name Type Description

commands commands entirely confirmed commands optional

fragments command-
fragments

partially confirmed commands optional

Rules

Rule: durability

If a command has durable implications, it MUST NOT be confirmed until the fact of the command has been
recorded on durable media.

Rule: no-overlaps

If a command-id appears in the commands field, it MUST NOT appear in the fragments field.

Rule: minimal-fragments

When choice is permitted, a command MUST appear in the commands field rather than the fragments field.

Rule: exclude-known-complete

Command-ids included in prior known-complete replies MUST be excluded from the set of all confirmed
commands.

Control Classes

146

Control: session.completed

Name completed

Code 0xa

An AMQP sender MUST handle incoming session.completed controls.

This control is sent by the receiver of commands, and handled by the sender of commands. It informs the sender of
all commands completed by the receiver. This excludes commands known by the receiver to be considered complete
at the sender.

Arguments

Name Type Description

commands completed commands optionalcommands

The ids of all completed commands. This excludes commands known by the receiver to be
considered complete at the sender.

bit optionaltimely-
reply If set, the sender is no longer free to delay the known-completed reply.

Rules

Rule: known-completed-reply

The sender MUST eventually reply with a known-completed set that covers the completed ids.

Rule: delayed-reply

The known-complete reply MAY be delayed at the senders discretion if the timely-reply field is not set.

Rule: merged-reply

Multiple replies may be merged by sending a single known-completed that includes the union of the merged
command-id sets.

Rule: completed-implies-confirmed

The sender MUST consider any completed commands to also be confirmed.

Rule: exclude-known-complete

Command-ids included in prior known-complete replies MUST be excluded from the set of all completed
commands.

Control Classes

147

Control: session.known-completed

Name known-completed

Code 0xb

An AMQP receiver MUST handle incoming session.known-completed controls.

This control is sent by the sender of commands, and handled by the receiver of commands. It is sent in reply to one
or more completed controls from the receiver. It informs the receiver that commands are known to be completed by
the sender.

Arguments

Name Type Description

commands commands known to be complete optionalcommands

The set of completed commands for one or more session.completed controls.

Rules

Rule: stateless

The sender need not keep state to generate this reply. It is sufficient to reply to any completed control with
an exact echo of the completed ids.

Rule: known-completed-implies-known-confirmed

The receiver MUST treat any of the specified commands to be considered by the sender as confirmed as
well as completed.

Control Classes

148

Control: session.flush

Name flush

Code 0xc

An AMQP receiver MUST handle incoming session.flush controls.

This control is sent by the sender of commands and handled by the receiver of commands. It requests that the receiver
produce the indicated command sets. The receiver should issue the indicated sets at the earliest possible opportunity.

Arguments

Name Type Description

expected bit request notification of expected commands optional

confirmed bit request notification of confirmed commands optional

completed bit request notification of completed commands optional

Control Classes

149

Control: session.gap

Name gap

Code 0xd

An AMQP receiver MUST handle incoming session.gap controls.

This control is sent by the sender of commands and handled by the receiver of commands. It sends command ranges
for which there will be no further data forthcoming. The receiver should proceed with the next available commands
that arrive after the gap.

Arguments

Name Type Description

commands optionalcommands

The set of command-ids that are contained in this gap.

Rules

Rule: gap-confirmation-and-completion

The command-ids covered by a session.gap MUST be added to the completed and confirmed sets by the
receiver.

Rule: aborted-commands

If a session.gap covers a partially received command, the receiving peer MUST treat the command as aborted.

Rule: completed-or-confirmed-commands

If a session.gap covers a completed or confirmed command, the receiving peer MUST continue to treat the
command as completed or confirmed.

150

10. Command Classes
Class: execution

CodeName Description

0x3 execution execution commands

An AMQP server MUST implement the execution class.

An AMQP client MUST implement the execution class.

Methods

Code Name

sync()0x1

request notification of completion for issued commands

result(command-id: sequence-no, value: struct32)0x2

carries execution results

exception(error-code: error-code, command-id: sequence-no, class-code: uint8, command-code: uint8,
field-index: uint8, description: str16, error-info: map)

0x3

notifies a peer of an execution error

The execution class provides commands that carry execution information about other model level commands.

Command Classes

151

Domain: execution.error-code

Name Type Description

error-code uint16

Valid Values

Value Name Description

403 unauthorized-
access

The client attempted to work with a server entity to which it has no access due
to security settings.

404 not-found The client attempted to work with a server entity that does not exist.

405 resource-
locked

The client attempted to work with a server entity to which it has no access because
another client is working with it.

406 precondition-
failed

The client requested a command that was not allowed because some precondition
failed.

408 resource-
deleted

A server entity the client is working with has been deleted.

409 illegal-
state

The peer sent a command that is not permitted in the current state of the session.

503 command-
invalid

The command segments could not be decoded.

506 resource-
limit-
exceeded

The client exceeded its resource allocation.

530 not-allowed The peer tried to use a command a manner that is inconsistent with the rules
described in the specification.

531 illegal-
argument

The command argument is malformed, i.e. it does not fall within the specified
domain. The illegal-argument exception can be raised on execution of any
command which has domain valued fields.

540 not-
implemented

The peer tried to use functionality that is not implemented in its partner.

541 internal-
error

The peer could not complete the command because of an internal error. The peer
may require intervention by an operator in order to resume normal operations.

542 invalid-
argument

An invalid argument was passed to a command, and the operation could not
proceed. An invalid argument is not illegal (see illegal-argument), i.e. it matches
the domain definition; however the particular value is invalid in this context.

Command Classes

152

Command: execution.sync

Name sync

Code 0x1

An AMQP server MUST handle incoming execution.sync commands.

An AMQP client MUST handle incoming execution.sync commands.

This command is complete when all prior commands are completed.

Command Classes

153

Command: execution.result

Name result

Code 0x2

An AMQP server MUST handle incoming execution.result commands.

An AMQP client MUST handle incoming execution.result commands.

This command carries data resulting from the execution of a command.

Arguments

Name Type Description

command-id sequence-no required

value struct32 optional

Command Classes

154

Command: execution.exception

Name exception

Code 0x3

An AMQP client MUST handle incoming execution.exception commands.

An AMQP server MUST handle incoming execution.exception commands.

This command informs a peer of an execution exception. The command-id, when given, correlates the error to a
specific command.

Arguments

Name Type Description

error-code error-code error code indicating the type of error required

sequence-no exceptional command optionalcommand-id

The command-id of the command which caused the exception. If the exception was not caused by
a specific command, this value is not set.

class-code uint8 the class code of the command whose execution gave rise
to the error (if appropriate)

optional

command-
code

uint8 the class code of the command whose execution gave rise
to the error (if appropriate)

optional

uint8 index of the exceptional field optionalfield-index

The zero based index of the exceptional field within the arguments to the exceptional command. If
the exception was not caused by a specific field, this value is not set.

str16 descriptive text on the exception optionaldescription

The description provided is implementation defined, but MUST be in the language appropriate for
the selected locale. The intention is that this description is suitable for logging or alerting output.

error-info map map to carry additional information about the error optional

Command Classes

155

Class: message

CodeName Description

0x4 message message transfer

An AMQP server MUST implement the message class.

An AMQP client MUST implement the message class.

Methods

Code Name

transfer(destination: destination, accept-mode: accept-mode, acquire-mode: acquire-mode)0x1

transfer a message

accept(transfers: session.commands)0x2

reject a message

reject(transfers: session.commands, code: reject-code, text: str8)0x3

reject a message

release(transfers: session.commands, set-redelivered: bit)0x4

release a message

acquire(transfers: session.commands)0x5

acquire messages for consumption

resume(destination: destination, resume-id: resume-id)0x6

resume an interrupted message transfer

subscribe(queue: queue.name, destination: destination, accept-mode: accept-mode, acquire-mode: acquire-
mode, exclusive: bit, resume-id: resume-id, resume-ttl: uint64, arguments: map)

0x7

start a queue subscription

cancel(destination: destination)0x8

end a queue subscription

set-flow-mode(destination: destination, flow-mode: flow-mode)0x9

set the flow control mode

flow(destination: destination, unit: credit-unit, value: uint32)0xa

control message flow

flush(destination: destination)0xb

force the sending of available messages

stop(destination: destination)0xc

stop the sending of messages

The message class provides commands that support an industry-standard messaging model.

Command Classes

156

Transfer States

 START:

 The message has yet to be sent to the recipient.

 NOT-ACQUIRED:

 The message has been sent to the recipient, but is not
 acquired by the recipient.

 ACQUIRED:

 The message has been sent to and acquired by the recipient.

 END:

 The transfer is complete.

State Transitions

 *:TRANSFER (accept-mode=none) *:TRANSFER (acquire-mode=pre-acquired)
 +---------------------------------START--+
	*:TRANSFER (acquire-mode=not-acquired)
R:RELEASE \|/	
+-------------NOT-ACQUIRED<--+	
	\|/
	ACQUIRED<---+
	\|/
+------------->END	
/	\
 +-------------------------------+

Grammar:

 message = *:TRANSFER [R:ACQUIRE] [R:ACCEPT / R:REJECT / R:RELEASE]
 / *:RESUME
 / *:SET-FLOW-MODE
 / *:FLOW
 / *:STOP
 / C:SUBSCRIBE
 / C:CANCEL
 / C:FLUSH

Command Classes

157

Rules

Rule: persistent-message

The server SHOULD respect the delivery-mode property of messages and SHOULD make a best-effort to
hold persistent messages on a reliable storage mechanism.

Scenario: Send a persistent message to queue, stop server, restart server and then verify whether message
is still present. Assumes that queues are durable. Persistence without durable queues makes no sense.

Rule: no-persistent-message-discard

The server MUST NOT discard a persistent message in case of a queue overflow.

Scenario: Create a queue overflow situation with persistent messages and verify that messages do not
get lost (presumably the server will write them to disk).

Rule: throttling

The server MAY use the message.flow command to slow or stop a message publisher when necessary.

Rule: non-persistent-message-overflow

The server MAY overflow non-persistent messages to persistent storage.

Rule: non-persistent-message-discard

The server MAY discard or dead-letter non-persistent messages on a priority basis if the queue size exceeds
some configured limit.

Rule: min-priority-levels

The server MUST implement at least 2 priority levels for messages, where priorities 0 and 9 are treated as
two distinct levels.

Rule: priority-level-implementation

The server SHOULD implement distinct priority levels in the following manner:

If the server implements n distinct priorities then priorities 0 to 5 - ceiling(n/2) should be treated equivalently
and should be the lowest effective priority. The priorities 4 + floor(n/2) should be treated equivalently and
should be the highest effective priority. The priorities (5 - ceiling(n/2)) to (4 + floor(n/2)) inclusive must
be treated as distinct priorities.

Thus, for example, if 2 distinct priorities are implemented, then levels 0 to 4 are equivalent, and levels 5 to 9
are equivalent and levels 4 and 5 are distinct. If 3 distinct priorities are implements the 0 to 3 are equivalent,
5 to 9 are equivalent and 3, 4 and 5 are distinct.

This scheme ensures that if two priorities are distinct for a server which implements m separate priority
levels they are also distinct for a server which implements n different priority levels where n > m.

Command Classes

158

Rule: priority-delivery

The server MUST deliver messages of the same priority in order irrespective of their individual persistence.

Scenario: Send a set of messages with the same priority but different persistence settings to a queue.
Subscribe and verify that messages arrive in same order as originally published.

Command Classes

159

Domain: message.delivery-properties

Struct Type

Size Packing

4 2

Fields

Name Type Description

bit controls discard of unroutable messages optionaldiscard-
unroutable If set on a message that is not routable the broker can discard it. If not set, an unroutable message

should be handled by reject when accept-mode is explicit; or by routing to the alternate-exchange
if defined when accept-mode is none.

bit Consider message unroutable if it cannot be processed
immediately

optionalimmediate

If the immediate flag is set to true on a message transferred to a Server, then the message should
be considered unroutable (and not delivered to any queues) if, for any queue that it is to be routed
to according to the standard routing behavior, there is not a subscription on that queue able to
receive the message. The treatment of unroutable messages is dependent on the value of the discard-
unroutable flag.

The immediate flag is ignored on transferred to a Client.

bit redelivery flag optionalredelivered

This boolean flag indicates that the message may have been previously delivered to this or another
client.

If the redelivered flag is set on transfer to a Server, then any delivery of the message from that
Server to a Client must also have the redelivered flag set to true.

delivery-
priority

message priority, 0 to 9 requiredpriority

Message priority, which can be between 0 and 9. Messages with higher priorities may be delivered
before those with lower priorities.

delivery-
mode

message persistence requirement requireddelivery-
mode

The delivery mode may be non-persistent or persistent.

uint64 time to live in ms optionalttl

Duration in milliseconds for which the message should be considered "live". If this is set then a
message expiration time will be computed based on the current time plus this value. Messages that
live longer than their expiration time will be discarded (or dead lettered).

timestamp datetime message timestamp optional

Command Classes

160

Name Type Description

The timestamp is set by the broker on arrival of the message.

datetime message expiration time optionalexpiration

The expiration header assigned by the broker. After receiving the message the broker sets expiration
to the sum of the ttl specified in the publish command and the current time. (ttl=expiration -
timestamp)

exchange.nameoriginating exchange optionalexchange

Identifies the exchange specified in the destination field of the message.transfer used to publish the
message. This MUST be set by the broker upon receipt of a message.

str8 message routing key optionalrouting-key

The value of the key determines to which queue the exchange will send the message. The way in
which keys are used to make this routing decision depends on the type of exchange to which the
message is sent. For example, a direct exchange will route a message to a queue if that queue is
bound to the exchange with a binding-key identical to the routing-key of the message.

resume-id global id for message transfer optionalresume-id

When a resume-id is provided the recipient MAY use it to retain message data should the session
expire while the message transfer is still incomplete.

uint64 ttl in ms for interrupted message data optionalresume-ttl

When a resume-ttl is provided the recipient MAY use it has a guideline for how long to retain the
partially complete data when a resume-id is specified. If no resume-id is specified then this value
should be ignored.

Rules

Rule: implementation

The server MUST try to signal redelivered messages when it can. When redelivering a message that was not
successfully accepted, the server SHOULD deliver it to the original client if possible.

Scenario: Create a shared queue and publish a message to the queue. Subscribe using explicit accept-
mode, but do not accept the message. Close the session, reconnect, and subscribe to the queue again. The
message MUST arrive with the redelivered flag set.

Rule: hinting

The client should not rely on the redelivered field to detect duplicate messages where publishers may
themselves produce duplicates. A fully robust client should be able to track duplicate received messages on
non-transacted, and locally-transacted sessions.

Rule: ttl-decrement

If a message is transferred between brokers before delivery to a final subscriber the ttl should be decremented
before peer to peer transfer and both timestamp and expiration should be cleared.

Command Classes

161

Domain: message.fragment-properties

These properties permit the transfer of message fragments. These may be used in conjunction with byte level flow
control to limit the rate at which large messages are received. Only the first fragment carries the delivery-properties
and message-properties. Syntactically each fragment appears as a complete message to the lower layers of the protocol,
however the model layer is required to treat all the fragments as a single message. For example all fragments must
be delivered to the same client. In pre-acquired mode, no message fragments can be delivered by the broker until the
entire message has been received.

Struct Type

Size Packing

4 2

Fields

Name Type Description

bit default: 1first

True if this fragment contains the start of the message, false otherwise.

bit default: 1last

True if this fragment contains the end of the message, false otherwise.

uint64 optionalfragment-
size This field may optionally contain the size of the fragment.

Command Classes

162

Domain: message.reply-to

The reply-to domain provides a simple address structure for replying to to a message to a destination within the same
virtual-host.

Struct Type

Size Packing

2 2

Fields

Name Type Description

exchange exchange.namethe name of the exchange to reply to optional

routing-key str8 the routing-key to use when replying optional

Command Classes

163

Domain: message.message-properties

Struct Type

Size Packing

4 2

Fields

Name Type Description

uint64 length of the body segment in bytes optionalcontent-
length The length of the body segment in bytes.

uuid application message identifier optionalmessage-id

Message-id is an optional property of UUID type which uniquely identifies a message within the
message system. The message producer is usually responsible for setting the message-id. The server
MAY discard a message as a duplicate if the value of the message-id matches that of a previously
received message. Duplicate messages MUST still be accepted if transferred with an accept-mode
of "explicit".

vbin16 application correlation identifier optionalcorrelation-
id This is a client-specific id that may be used to mark or identify messages between clients. The

server ignores this field.

reply-to destination to reply to optionalreply-to

The destination of any message that is sent in reply to this message.

str8 MIME content type optionalcontent-
type The RFC-2046 MIME type for the message content (such as "text/plain"). This is set by the

originating client.

str8 MIME content encoding optionalcontent-
encoding The encoding for character-based message content. This is set by the originating client. Examples

include UTF-8 and ISO-8859-15.

vbin16 creating user id optionaluser-id

The identity of the user responsible for producing the message. The client sets this value, and it
is authenticated by the broker.

vbin16 creating application id optionalapp-id

The identity of the client application responsible for producing the message.

map application specific headers table optionalapplication-
headers This is a collection of user-defined headers or properties which may be set by the producing client

and retrieved by the consuming client.

Rules

Rule: unique

A message-id MUST be unique within a given server instance. A message-id SHOULD be globally unique
(i.e. across different systems).

Command Classes

164

Rule: immutable

A message ID is immutable. Once set, a message-id MUST NOT be changed or reassigned, even if the
message is replicated, resent or sent to multiple queues.

Rule: authentication

The server MUST produce an unauthorized-access exception if the user-id field is set to a principle for which
the client is not authenticated.

Command Classes

165

Domain: message.destination

Name Type Description

destination str8 destination for a message

Specifies the destination to which the message is to be transferred.

Command Classes

166

Domain: message.accept-mode

Name Type Description

accept-mode uint8 indicates a confirmation mode

Controls how the sender of messages is notified of successful transfer.

Valid Values

Value Name Description

0 explicit Successful transfer is signaled by message.accept. An acquired message (whether
acquisition was implicit as in pre-acquired mode or explicit as in not-acquired
mode) is not considered transferred until a message.accept that includes the
transfer command is received.

1 none Successful transfer is assumed when accept-mode is "pre-acquired". Messages
transferred with an accept-mode of "not-acquired" cannot be acquired when
accept-mode is "none".

Command Classes

167

Domain: message.acquire-mode

Name Type Description

acquire-
mode

uint8 indicates the transfer mode

Indicates whether a transferred message can be considered as automatically acquired or whether an explicit request
is necessary in order to acquire it.

Valid Values

Value Name Description

0 pre-
acquired

the message is acquired when the transfer starts

1 not-
acquired

the message is not acquired when it arrives, and must be explicitly acquired by
the recipient

Command Classes

168

Domain: message.reject-code

Name Type Description

reject-code uint16 reject code for transfer

Code specifying the reason for a message reject.

Valid Values

Value Name Description

0 unspecified Rejected for an unspecified reason.

1 unroutable Delivery was attempted but there were no queues which the message could be
routed to.

2 immediate The rejected message had the immediate flag set to true, but at the time of the
transfer at least one of the queues to which it was to be routed did not have any
subscriber able to take the message.

Command Classes

169

Domain: message.resume-id

Name Type Description

resume-id str16

A resume-id serves to identify partially transferred message content. The id is chosen by the sender, and must be unique
to a given user. A resume-id is not expected to be unique across users.

Command Classes

170

Domain: message.delivery-mode

Name Type Description

delivery-
mode

uint8 indicates whether a message should be treated as transient or durable

Used to set the reliability requirements for a message which is transferred to the server.

Valid Values

Value Name Description

1 non-
persistent

A non-persistent message may be lost in event of a failure, but the nature of the
communication is such that an occasional message loss is tolerable. This is the
lowest overhead mode. Non-persistent messages are delivered at most once only.

2 persistent A persistent message is one which must be stored on a persistent medium (usually
hard drive) at every stage of delivery so that it will not be lost in event of failure
(other than of the medium itself). This is normally accomplished with some
additional overhead. A persistent message may be delivered more than once if
there is uncertainty about the state of its delivery after a failure and recovery.

Command Classes

171

Domain: message.delivery-priority

Name Type Description

delivery-
priority

uint8 indicates the desired priority to assign to a message transfer

Used to assign a priority to a message transfer. Priorities range from 0 (lowest) to 9 (highest).

Valid Values

Value Name Description

0 lowest Lowest possible priority message.

1 lower Very low priority message

2 low Low priority message.

3 below-
average

Below average priority message.

4 medium Medium priority message.

5 above-
average

Above average priority message

6 high High priority message

7 higher Higher priority message

8 very-high Very high priority message.

9 highest Highest possible priority message.

Command Classes

172

Domain: message.flow-mode

Name Type Description

flow-mode uint8 the flow-mode for allocating flow credit

Valid Values

Value Name Description

0 credit Credit based flow control.

1 window Window based flow control.

Command Classes

173

Domain: message.credit-unit

Name Type Description

credit-unit uint8 specifies the unit of credit balance

Valid Values

Value Name Description

0 message Indicates a value specified in messages.

1 byte Indicates a value specified in bytes.

Command Classes

174

Command: message.transfer

Name transfer

Code 0x1

An AMQP server MUST handle incoming message.transfer commands.

An AMQP client MUST handle incoming message.transfer commands.

This command transfers a message between two peers. When a client uses this command to publish a message to a
broker, the destination identifies a specific exchange. The message will then be routed to queues as defined by the
exchange configuration. The client may request a broker to transfer messages to it, from a particular queue, by issuing
a subscribe command. The subscribe command specifies the destination that the broker should use for any resulting
transfers.

Arguments

Name Type Description

destination message destination optionaldestination

Specifies the destination to which the message is to be transferred.

accept-mode requiredaccept-mode

Indicates whether message.accept, session.complete, or nothing at all is required to indicate
successful transfer of the message.

acquire-
mode

requiredacquire-
mode

Indicates whether or not the transferred message has been acquired.

Segments
Following the command segment, the following segments may follow.

header

This segment is optional.

The header segment consists of at most one of each of the following entries:

• delivery-properties [optional].

• fragment-properties [optional].

• message-properties [optional].

body

This segment is optional.

The body segment consists of opaque binary data (i.e. the message body).

Command Classes

175

Rules

Rule: transactional-publish

If a transfer to an exchange occurs within a transaction, then it is not available from the queue until the
transaction commits. It is not specified whether routing takes place when the transfer is received or when
the transaction commits.

Rule: blank-destination

The server MUST accept a blank destination to mean the default exchange.

Exceptions

Exception: nonexistent-exchange

Error: not-found

If the destination refers to an exchange that does not exist, the peer MUST raise a session exception.

Command Classes

176

Command: message.accept

Name accept

Code 0x2

An AMQP server MUST handle incoming message.accept commands.

An AMQP client MUST handle incoming message.accept commands.

Accepts the message. Once a transfer is accepted, the command-id may no longer be referenced from other commands.

Arguments

Name Type Description

session.commands requiredtransfers

Identifies the messages previously transferred that should be accepted.

Rules

Rule: acquisition

The recipient MUST have acquired a message in order to accept it.

Command Classes

177

Command: message.reject

Name reject

Code 0x3

An AMQP server MUST handle incoming message.reject commands.

An AMQP client MUST handle incoming message.reject commands.

Indicates that the message transfers are unprocessable in some way. A server may reject a message if it is unroutable.
A client may reject a message if it is invalid. A message may be rejected for other reasons as well. Once a transfer is
rejected, the command-id may no longer be referenced from other commands.

Arguments

Name Type Description

session.commands requiredtransfers

Identifies the messages previously transferred that should be rejected.

reject-code requiredcode

Code describing the reason for rejection.

str8 informational text for message reject optionaltext

Text describing the reason for rejection.

Rules

Rule: alternate-exchange

When a client rejects a message, the server MUST deliver that message to the alternate-exchange on the
queue from which it was delivered. If no alternate-exchange is defined for that queue the broker MAY
discard the message.

Rule: acquisition

The recipient MUST have acquired a message in order to reject it. If the message is not acquired any reject
MUST be ignored.

Command Classes

178

Command: message.release

Name release

Code 0x4

An AMQP server MUST handle incoming message.release commands.

An AMQP client MAY handle incoming message.release commands.

Release previously transferred messages. When acquired messages are released, they become available for acquisition
by any subscriber. Once a transfer is released, the command-id may no longer be referenced from other commands.

Arguments

Name Type Description

session.commands requiredtransfers

Indicates the messages to be released.

bit mark the released messages as redelivered optionalset-
redelivered By setting set-redelivered to true, any acquired messages released to a queue with this command

will be marked as redelivered on their next transfer from that queue. If this flag is not set, then
an acquired message will retain its original redelivered status on the queue. Messages that are not
acquired are unaffected by the value of this flag.

Rules

Rule: ordering

Acquired messages that have been released MAY subsequently be delivered out of order. Implementations
SHOULD ensure that released messages keep their position with respect to undelivered messages of the
same priority.

Command Classes

179

Command: message.acquire

Name acquire

Code 0x5

An AMQP server MUST handle incoming message.acquire commands.

Acquires previously transferred messages for consumption. The acquired ids (if any) are sent via message.acquired.

Arguments

Name Type Description

session.commands requiredtransfers

Indicates the messages to be acquired.

Rules

Rule: one-to-one

Each acquire MUST produce exactly one message.acquired even if it is empty.

Result

Struct Type

Size Packing

4 2

Fields

Name Type Description

session.commands requiredtransfers

Indicates the acquired messages.

Command Classes

180

Command: message.resume

Name resume

Code 0x6

An AMQP server MUST handle incoming message.resume commands.

An AMQP client MUST handle incoming message.resume commands.

This command resumes an interrupted transfer. The recipient should return the amount of partially transferred data
associated with the given resume-id, or zero if there is no data at all. If a non-zero result is returned, the recipient
should expect to receive message fragment(s) containing the remainder of the interrupted message.

Arguments

Name Type Description

destination optionaldestination

The destination to which the remaining message fragments are transferred.

resume-id requiredresume-id

The name of the transfer being resumed.

Rules

Rule: unknown-resume-id

If the resume-id is not known, the recipient MUST return an offset of zero.

Exceptions

Exception: destination-not-found

Error: not-found

If the destination does not exist, the recipient MUST close the session.

Result

Struct Type

Size Packing

4 2

Fields

Name Type Description

uint64 optionaloffset

Indicates the amount of data already transferred.

Command Classes

181

Command: message.subscribe

Name subscribe

Code 0x7

An AMQP server MUST handle incoming message.subscribe commands.

This command asks the server to start a "subscription", which is a request for messages from a specific queue.
Subscriptions last as long as the session they were created on, or until the client cancels them.

Arguments

Name Type Description

queue.name requiredqueue

Specifies the name of the subscribed queue.

destination incoming message destination optionaldestination

The client specified name for the subscription. This is used as the destination for all messages
transferred from this subscription. The destination is scoped to the session.

accept-mode requiredaccept-mode

The accept-mode to use for messages transferred from this subscription.

acquire-
mode

requiredacquire-
mode

The acquire-mode to use for messages transferred from this subscription.

bit request exclusive access optionalexclusive

Request an exclusive subscription. This prevents other subscribers from subscribing to the queue.

resume-id optionalresume-id

Requests that the broker use the supplied resume-id when transferring messages for this
subscription.

uint64 optionalresume-ttl

Requested duration in milliseconds for the broker use as resume-ttl when transferring messages for
this subscription.

map arguments for vendor extensions optionalarguments

The syntax and semantics of these arguments depends on the providers implementation.

Rules

Rule: simultaneous-subscriptions

The server SHOULD support at least 16 subscriptions per queue, and ideally, impose no limit except as
defined by available resources.

Scenario: Create a queue and create subscriptions on that queue until the server closes the connection.
Verify that the number of subscriptions created was at least sixteen and report the total number.

Rule: default-flow-mode

The default flow mode for new subscriptions is window-mode.

Command Classes

182

Rule: initial-credit

Immediately after a subscription is created, the initial byte and message credit for that destination is zero.

Exceptions

Exception: queue-deletion

Error: resource-deleted

Field: queue

If the queue for this subscription is deleted, any subscribing sessions MUST be closed. This exception may
occur at any time after the subscription has been completed.

Exception: queue-not-found

Error: not-found

Field: queue

If the queue for this subscription does not exist, then the subscribing session MUST be closed.

Exception: unique-subscriber-destination

Error: not-allowed

The client MUST NOT specify a destination that refers to an existing subscription on the same session.

Scenario: Attempt to create two subscriptions on the same session with the same non-empty destination.

Exception: in-use

Error: resource-locked

The server MUST NOT grant an exclusive subscription to a queue that already has subscribers.

Scenario: Open two connections to a server, and in one connection create a shared (non-exclusive) queue
and then subscribe to the queue. In the second connection attempt to subscribe to the same queue using the
exclusive option.

Command Classes

183

Command: message.cancel

Name cancel

Code 0x8

An AMQP server MUST handle incoming message.cancel commands.

This command cancels a subscription. This does not affect already delivered messages, but it does mean the server will
not send any more messages for that subscription. The client may receive an arbitrary number of messages in between
sending the cancel command and receiving notification that the cancel command is complete.

Arguments

Name Type Description

destination destination required

Rules

Rule: post-cancel-transfer-resolution

Canceling a subscription MUST NOT affect pending transfers. A transfer made prior to canceling transfers to
the destination MUST be able to be accepted, released, acquired, or rejected after the subscription is canceled.

Exceptions

Exception: subscription-not-found

Error: not-found

If the subscription specified by the destination is not found, the server MUST close the session.

Command Classes

184

Command: message.set-flow-mode

Name set-flow-mode

Code 0x9

An AMQP server MUST handle incoming message.set-flow-mode commands.

An AMQP client MUST handle incoming message.set-flow-mode commands.

Sets the mode of flow control used for a given destination to either window or credit based flow control. With
credit based flow control, the sender of messages continually maintains its current credit balance with the recipient.
The credit balance consists of two values, a message count, and a byte count. Whenever message data is sent, both
counts must be decremented. If either value reaches zero, the flow of message data must stop. Additional credit
is received via the message.flow command. The sender MUST NOT send partial assemblies. This means that if
there is not enough byte credit available to send a complete message, the sender must either wait or use message
fragmentation (see the fragment-properties header struct) to send the first part of the message data in a complete
assembly. Window based flow control is identical to credit based flow control, however message transfer completion
implicitly grants a single unit of message credit, and the size of the message in byte credits for each completed message
transfer. Completion of the transfer command with session.completed is the only way credit is implicitly updated;
message.accept, message.release, message.reject, tx.commit and tx.rollback have no effect on the outstanding credit
balances.

Arguments

Name Type Description

destination destination optional

flow-mode requiredflow-mode

The new flow control mode.

Rules

Rule: byte-accounting

The byte count is decremented by the payload size of each transmitted frame with segment type header or
body appearing within a message.transfer command. Note that the payload size is the frame size less the
frame header size.

Rule: mode-switching

Mode switching may only occur if both the byte and message credit balance are zero. There are three
ways for a recipient of messages to be sure that the sender's credit balances are zero: 1) The recipient may
send a message.stop command to the sender. When the recipient receives notification of completion for the
message.stop command, it knows that the sender's credit is zero. 2) The recipient may perform the same steps
described in (1) with the message.flush command substituted for the message.stop command. 3) Immediately
after a subscription is created with message.subscribe, the credit for that destination is zero.

Rule: default-flow-mode

Prior to receiving an explicit set-flow-mode command, a peer MUST consider the flow-mode to be window.

Command Classes

185

Command: message.flow

Name flow

Code 0xa

An AMQP server MUST handle incoming message.flow commands.

An AMQP client MUST handle incoming message.flow commands.

This command controls the flow of message data to a given destination. It is used by the recipient of messages to
dynamically match the incoming rate of message flow to its processing or forwarding capacity. Upon receipt of this
command, the sender must add "value" number of the specified unit to the available credit balance for the specified
destination. A value of (0xFFFFFFFF) indicates an infinite amount of credit. This disables any limit for the given unit
until the credit balance is zeroed with message.stop or message.flush.

Arguments

Name Type Description

destination destination optional

credit-unit requiredunit

The unit of value.

uint32 optionalvalue

If the value is not set then this indicates an infinite amount of credit.

Command Classes

186

Command: message.flush

Name flush

Code 0xb

An AMQP server MUST handle incoming message.flush commands.

Forces the sender to exhaust his credit supply. The sender's credit will always be zero when this command completes.
The command completes when immediately available message data has been transferred, or when the credit supply
is exhausted.

Arguments

Name Type Description

destination destination optional

Command Classes

187

Command: message.stop

Name stop

Code 0xc

An AMQP server MUST handle incoming message.stop commands.

An AMQP client MUST handle incoming message.stop commands.

On receipt of this command, a producer of messages MUST set his credit to zero for the given destination. When
notifying of completion, credit MUST be zero and no further messages will be sent until such a time as further credit
is received.

Arguments

Name Type Description

destination destination optional

Command Classes

188

Class: tx

CodeName Description

0x5 tx work with standard transactions

An AMQP server SHOULD implement the tx class.

Methods

Code Name

select()0x1

select standard transaction mode

commit()0x2

commit the current transaction

rollback()0x3

abandon the current transaction

Standard transactions provide so-called "1.5 phase commit". We can ensure that work is never lost, but there is a
chance of confirmations being lost, so that messages may be resent. Applications that use standard transactions must
be able to detect and ignore duplicate messages.

Grammar:

 tx = C:SELECT
 / C:COMMIT
 / C:ROLLBACK

Rules

Rule: duplicate-tracking

An client using standard transactions SHOULD be able to track all messages received within a reasonable
period, and thus detect and reject duplicates of the same message. It SHOULD NOT pass these to the
application layer.

Command Classes

189

Command: tx.select

Name select

Code 0x1

An AMQP server MUST handle incoming tx.select commands (if the tx class is implemented).

This command sets the session to use standard transactions. The client must use this command exactly once on a
session before using the Commit or Rollback commands.

Exceptions

Exception: exactly-once

Error: illegal-state

A client MUST NOT select standard transactions on a session that is already transactional.

Exception: no-dtx

Error: illegal-state

A client MUST NOT select standard transactions on a session that is already enlisted in a distributed
transaction.

Exception: explicit-accepts

Error: not-allowed

On a session on which tx.select has been issued, a client MUST NOT issue a message.subscribe command
with the accept-mode property set to any value other than explicit. Similarly a tx.select MUST NOT be
issued on a session on which a there is a non cancelled subscriber with accept-mode of none.

Command Classes

190

Command: tx.commit

Name commit

Code 0x2

An AMQP server MUST handle incoming tx.commit commands (if the tx class is implemented).

This command commits all messages published and accepted in the current transaction. A new transaction starts
immediately after a commit.

In more detail, the commit acts on all messages which have been transferred from the Client to the Server, and on all
acceptances of messages sent from Server to Client. Since the commit acts on commands sent in the same direction
as the commit command itself, there is no ambiguity on the scope of the commands being committed. Further, the
commit will not be completed until all preceding commands which it affects have been completed.

Since transactions act on explicit accept commands, the only valid accept-mode for message subscribers is explicit.
For transferring messages from Client to Server (publishing) all accept-modes are permitted.

Exceptions

Exception: select-required

Error: illegal-state

A client MUST NOT issue tx.commit on a session that has not been selected for standard transactions with
tx.select.

Command Classes

191

Command: tx.rollback

Name rollback

Code 0x3

An AMQP server MUST handle incoming tx.rollback commands (if the tx class is implemented).

This command abandons the current transaction. In particular the transfers from Client to Server (publishes) and
accepts of transfers from Server to Client which occurred in the current transaction are discarded. A new transaction
starts immediately after a rollback.

In more detail, when a rollback is issued, any the effects of transfers which occurred from Client to Server are discarded.
The Server will issue completion notification for all such transfers prior to the completion of the rollback. Similarly the
effects of any message.accept issued from Client to Server prior to the issuance of the tx.rollback will be discarded; and
notification of completion for all such commands will be issued before the issuance of the completion for the rollback.

After the completion of the rollback, the client will still hold the messages which it has not yet accepted (including those
for which accepts were previously issued within the transaction); i.e. the messages remain "acquired". If the Client
wishes to release those messages back to the Server, then appropriate message.release commands must be issued.

Exceptions

Exception: select-required

Error: illegal-state

A client MUST NOT issue tx.rollback on a session that has not been selected for standard transactions with
tx.select.

Command Classes

192

Class: dtx

CodeName Description

0x6 dtx Demarcates dtx branches

An AMQP server MAY implement the dtx class.

An AMQP client MAY implement the dtx class.

Methods

Code Name

select()0x1

Select dtx mode

start(xid: xid, join: bit, resume: bit)0x2

Start a dtx branch

end(xid: xid, fail: bit, suspend: bit)0x3

End a dtx branch

commit(xid: xid, one-phase: bit)0x4

Commit work on dtx branch

forget(xid: xid)0x5

Discard dtx branch

get-timeout(xid: xid)0x6

Obtain dtx timeout in seconds

prepare(xid: xid)0x7

Prepare a dtx branch

recover()0x8

Get prepared or completed xids

rollback(xid: xid)0x9

Rollback a dtx branch

set-timeout(xid: xid, timeout: uint32)0xa

Set dtx timeout value

This provides the X-Open XA distributed transaction protocol support. It allows a session to be selected for use
with distributed transactions, the transactional boundaries for work on that session to be demarcated and allows the
transaction manager to coordinate transaction outcomes.

Grammar:

 dtx-demarcation = C:SELECT *demarcation
 demarcation = C:START C:END

Command Classes

193

Grammar:

 dtx-coordination = *coordination
 coordination = command
 / outcome
 / recovery
 command = C:SET-TIMEOUT
 / C:GET-TIMEOUT
 outcome = one-phase-commit
 / one-phase-rollback
 / two-phase-commit
 / two-phase-rollback
 one-phase-commit = C:COMMIT
 one-phase-rollback = C:ROLLBACK
 two-phase-commit = C:PREPARE C:COMMIT
 two-phase-rollback = C:PREPARE C:ROLLBACK
 recovery = C:RECOVER *recovery-outcome
 recovery-outcome = one-phase-commit
 / one-phase-rollback
 / C:FORGET

Rules

Rule: transactionality

Enabling XA transaction support on a session requires that the server MUST manage transactions demarcated
by start-end blocks. That is to say that on this XA-enabled session, work undergone within transactional
blocks is performed on behalf a transaction branch whereas work performed outside of transactional blocks
is NOT transactional.

Command Classes

194

Domain: dtx.xa-result

Struct Type

Size Packing

4 2

Fields

Name Type Description

status xa-status required

Command Classes

195

Domain: dtx.xid

An xid uniquely identifies a transaction branch.

Struct Type

Size Packing

2 2

Fields

Name Type Description

format uint32 implementation specific format code required

global-id vbin8 global transaction id required

branch-id vbin8 branch qualifier required

Command Classes

196

Domain: dtx.xa-status

Name Type Description

xa-status uint16 XA return codes

Valid Values

Value Name Description

0 xa-ok Normal execution completion (no error).

1 xa-
rbrollback

The rollback was caused for an unspecified reason.

2 xa-
rbtimeout

A transaction branch took too long.

3 xa-heurhaz The transaction branch may have been heuristically completed.

4 xa-heurcom The transaction branch has been heuristically committed.

5 xa-heurrb The transaction branch has been heuristically rolled back.

6 xa-heurmix The transaction branch has been heuristically committed and rolled back.

7 xa-rdonly The transaction branch was read-only and has been committed.

Command Classes

197

Command: dtx.select

Name select

Code 0x1

An AMQP server MAY handle incoming dtx.select commands (if the dtx class is implemented).

This command sets the session to use distributed transactions. The client must use this command at least once on a
session before using XA demarcation operations.

Command Classes

198

Command: dtx.start

Name start

Code 0x2

An AMQP server MAY handle incoming dtx.start commands (if the dtx class is implemented).

This command is called when messages should be produced and consumed on behalf a transaction branch identified
by xid.

Arguments

Name Type Description

xid Transaction xid requiredxid

Specifies the xid of the transaction branch to be started.

bit Join with existing xid flag optionaljoin

Indicate whether this is joining an already associated xid. Indicate that the start applies to joining
a transaction previously seen.

bit Resume flag optionalresume

Indicate that the start applies to resuming a suspended transaction branch specified.

Exceptions

Exception: illegal-state

Error: illegal-state

Field: xid

If the command is invoked in an improper context (see class grammar) then the server MUST send a session
exception.

Exception: already-known

Error: not-allowed

Field: xid

If neither join nor resume is specified is specified and the transaction branch specified by xid has previously
been seen then the server MUST raise an exception.

Exception: join-and-resume

Error: not-allowed

Field: xid

If join and resume are specified then the server MUST raise an exception.

Command Classes

199

Exception: unknown-xid

Error: not-allowed

If xid is already known by the broker then the server MUST raise an exception.

Exception: unsupported

Error: not-implemented

If the broker does not support join the server MUST raise an exception.

Result

xa-resultType:

See: Section 10.4.2, “ dtx.xa-result
”

This confirms to the client that the transaction branch is started or specify the error condition. The value of this field
may be one of the following constants: xa-ok: Normal execution. xa-rbrollback: The broker marked the transaction
branch rollback-only for an unspecified reason. xa-rbtimeout: The work represented by this transaction branch took
too long.

Command Classes

200

Command: dtx.end

Name end

Code 0x3

An AMQP server MAY handle incoming dtx.end commands (if the dtx class is implemented).

This command is called when the work done on behalf a transaction branch finishes or needs to be suspended.

Arguments

Name Type Description

xid Transaction xid requiredxid

Specifies the xid of the transaction branch to be ended.

bit Failure flag optionalfail

If set, indicates that this portion of work has failed; otherwise this portion of work has completed
successfully.

bit Temporary suspension flag optionalsuspend

Indicates that the transaction branch is temporarily suspended in an incomplete state.

Rules

Rule: success

If neither fail nor suspend are specified then the portion of work has completed successfully.

Rule: session-closed

When a session is closed then the currently associated transaction branches MUST be marked rollback-only.

Rule: failure

An implementation MAY elect to roll a transaction back if this failure notification is received. Should
an implementation elect to implement this behavior, and this bit is set, then then the transaction branch
SHOULD be marked as rollback-only and the end result SHOULD have the xa-rbrollback status set.

Rule: resume

The transaction context is in a suspended state and must be resumed via the start command with resume
specified.

Exceptions

Exception: illegal-state

Error: illegal-state

Field: xid

Command Classes

201

If the command is invoked in an improper context (see class grammar) then the server MUST raise an
exception.

Exception: suspend-and-fail

Error: not-allowed

Field: xid

If suspend and fail are specified then the server MUST raise an exception.

Exception: not-associated

Error: illegal-state

The session MUST be currently associated with the given xid (through an earlier start call with the same xid).

Result

xa-resultType:

See: Section 10.4.2, “ dtx.xa-result
”

This command confirms to the client that the transaction branch is ended or specify the error condition. The value
of this field may be one of the following constants: xa-ok: Normal execution. xa-rbrollback: The broker marked the
transaction branch rollback-only for an unspecified reason. If an implementation chooses to implement rollback-on-
failure behavior, then this value should be selected if the dtx.end.fail bit was set. xa-rbtimeout: The work represented
by this transaction branch took too long.

Command Classes

202

Command: dtx.commit

Name commit

Code 0x4

An AMQP server MAY handle incoming dtx.commit commands (if the dtx class is implemented).

Commit the work done on behalf a transaction branch. This command commits the work associated with xid. Any
produced messages are made available and any consumed messages are discarded.

Arguments

Name Type Description

xid Transaction xid requiredxid

Specifies the xid of the transaction branch to be committed.

bit One-phase optimization flag optionalone-phase

Used to indicate whether one-phase or two-phase commit is used.

Exceptions

Exception: illegal-state

Error: illegal-state

Field: xid

If the command is invoked in an improper context (see class grammar) then the server MUST raise an
exception.

Exception: unknown-xid

Error: not-found

If xid is unknown (the transaction branch has not been started or has already been ended) then the server
MUST raise an exception.

Exception: not-disassociated

Error: illegal-state

If this command is called when xid is still associated with a session then the server MUST raise an exception.

Exception: one-phase

Error: illegal-state

The one-phase bit MUST be set if a commit is sent without a preceding prepare.

Command Classes

203

Exception: two-phase

Error: illegal-state

The one-phase bit MUST NOT be set if the commit has been preceded by prepare.

Result

xa-resultType:

See: Section 10.4.2, “ dtx.xa-result
”

This confirms to the client that the transaction branch is committed or specify the error condition. The value of this
field may be one of the following constants: xa-ok: Normal execution xa-heurhaz: Due to some failure, the work done
on behalf of the specified transaction branch may have been heuristically completed. xa-heurcom: Due to a heuristic
decision, the work done on behalf of the specified transaction branch was committed. xa-heurrb: Due to a heuristic
decision, the work done on behalf of the specified transaction branch was rolled back. xa-heurmix: Due to a heuristic
decision, the work done on behalf of the specified transaction branch was partially committed and partially rolled back.
xa-rbrollback: The broker marked the transaction branch rollback-only for an unspecified reason. xa-rbtimeout: The
work represented by this transaction branch took too long.

Command Classes

204

Command: dtx.forget

Name forget

Code 0x5

An AMQP server MAY handle incoming dtx.forget commands (if the dtx class is implemented).

This command is called to forget about a heuristically completed transaction branch.

Arguments

Name Type Description

xid Transaction xid requiredxid

Specifies the xid of the transaction branch to be forgotten.

Exceptions

Exception: illegal-state

Error: illegal-state

Field: xid

If the command is invoked in an improper context (see class grammar) then the server MUST raise an
exception.

Exception: unknown-xid

Error: not-found

If xid is unknown (the transaction branch has not been started or has already been ended) then the server
MUST raise an exception.

Exception: not-disassociated

Error: illegal-state

If this command is called when xid is still associated with a session then the server MUST raise an exception.

Command Classes

205

Command: dtx.get-timeout

Name get-timeout

Code 0x6

An AMQP server MAY handle incoming dtx.get-timeout commands (if the dtx class is implemented).

This command obtains the current transaction timeout value in seconds. If set-timeout was not used prior to invoking
this command, the return value is the default timeout; otherwise, the value used in the previous set-timeout call is
returned.

Arguments

Name Type Description

xid Transaction xid requiredxid

Specifies the xid of the transaction branch for getting the timeout.

Exceptions

Exception: unknown-xid

Error: not-found

If xid is unknown (the transaction branch has not been started or has already been ended) then the server
MUST raise an exception.

Result

Struct Type

Size Packing

4 2

Fields

Name Type Description

uint32 The current transaction timeout value requiredtimeout

The current transaction timeout value in seconds.

Command Classes

206

Command: dtx.prepare

Name prepare

Code 0x7

An AMQP server MAY handle incoming dtx.prepare commands (if the dtx class is implemented).

This command prepares for commitment any message produced or consumed on behalf of xid.

Arguments

Name Type Description

xid Transaction xid requiredxid

Specifies the xid of the transaction branch that can be prepared.

Rules

Rule: obligation-1

Once this command successfully returns it is guaranteed that the transaction branch may be either committed
or rolled back regardless of failures.

Rule: obligation-2

The knowledge of xid cannot be erased before commit or rollback complete the branch.

Exceptions

Exception: illegal-state

Error: illegal-state

Field: xid

If the command is invoked in an improper context (see class grammar) then the server MUST raise an
exception.

Exception: unknown-xid

Error: not-found

If xid is unknown (the transaction branch has not been started or has already been ended) then the server
MUST raise an exception.

Exception: not-disassociated

Error: illegal-state

If this command is called when xid is still associated with a session then the server MUST raise an exception.

Command Classes

207

Result

xa-resultType:

See: Section 10.4.2, “ dtx.xa-result
”

This command confirms to the client that the transaction branch is prepared or specify the error condition. The value
of this field may be one of the following constants: xa-ok: Normal execution. xa-rdonly: The transaction branch was
read-only and has been committed. xa-rbrollback: The broker marked the transaction branch rollback-only for an
unspecified reason. xa-rbtimeout: The work represented by this transaction branch took too long.

Command Classes

208

Command: dtx.recover

Name recover

Code 0x8

An AMQP server MAY handle incoming dtx.recover commands (if the dtx class is implemented).

This command is called to obtain a list of transaction branches that are in a prepared or heuristically completed state.

Result

Struct Type

Size Packing

4 2

Fields

Name Type Description

array array of xids to be recovered requiredin-doubt

Array containing the xids to be recovered (xids that are in a prepared or heuristically completed
state).

Command Classes

209

Command: dtx.rollback

Name rollback

Code 0x9

An AMQP server MAY handle incoming dtx.rollback commands (if the dtx class is implemented).

This command rolls back the work associated with xid. Any produced messages are discarded and any consumed
messages are re-enqueued.

Arguments

Name Type Description

xid Transaction xid requiredxid

Specifies the xid of the transaction branch that can be rolled back.

Exceptions

Exception: illegal-state

Error: illegal-state

Field: xid

If the command is invoked in an improper context (see class grammar) then the server MUST raise an
exception.

Exception: unknown-xid

Error: not-found

If xid is unknown (the transaction branch has not been started or has already been ended) then the server
MUST raise an exception.

Exception: not-disassociated

Error: illegal-state

If this command is called when xid is still associated with a session then the server MUST raise an exception.

Result

xa-resultType:

See: Section 10.4.2, “ dtx.xa-result
”

This command confirms to the client that the transaction branch is rolled back or specify the error condition. The value
of this field may be one of the following constants: xa-ok: Normal execution xa-heurhaz: Due to some failure, the
work done on behalf of the specified transaction branch may have been heuristically completed. xa-heurcom: Due to
a heuristic decision, the work done on behalf of the specified transaction branch was committed. xa-heurrb: Due to a

Command Classes

210

heuristic decision, the work done on behalf of the specified transaction branch was rolled back. xa-heurmix: Due to a
heuristic decision, the work done on behalf of the specified transaction branch was partially committed and partially
rolled back. xa-rbrollback: The broker marked the transaction branch rollback-only for an unspecified reason. xa-
rbtimeout: The work represented by this transaction branch took too long.

Command Classes

211

Command: dtx.set-timeout

Name set-timeout

Code 0xa

An AMQP server MAY handle incoming dtx.set-timeout commands (if the dtx class is implemented).

Sets the specified transaction branch timeout value in seconds.

Arguments

Name Type Description

xid Transaction xid requiredxid

Specifies the xid of the transaction branch for setting the timeout.

uint32 Dtx timeout in seconds requiredtimeout

The transaction timeout value in seconds.

Rules

Rule: effective

Once set, this timeout value is effective until this command is reinvoked with a different value.

Rule: reset

A value of zero resets the timeout value to the default value.

Exceptions

Exception: unknown-xid

Error: not-found

If xid is unknown (the transaction branch has not been started or has already been ended) then the server
MUST raise an exception.

Command Classes

212

Class: exchange

CodeName Description

0x7 exchange work with exchanges

An AMQP server MUST implement the exchange class.

An AMQP client MUST implement the exchange class.

Methods

Code Name

declare(exchange: name, type: str8, alternate-exchange: name, passive: bit, durable: bit, auto-delete: bit,
arguments: map)

0x1

verify exchange exists, create if needed

delete(exchange: name, if-unused: bit)0x2

delete an exchange

query(name: str8)0x3

request information about an exchange

bind(queue: queue.name, exchange: name, binding-key: str8, arguments: map)0x4

bind queue to an exchange

unbind(queue: queue.name, exchange: name, binding-key: str8)0x5

unbind a queue from an exchange

bound(exchange: str8, queue: str8, binding-key: str8, arguments: map)0x6

request information about bindings to an exchange

Exchanges match and distribute messages across queues. Exchanges can be configured in the server or created at
runtime.

Grammar:

 exchange = C:DECLARE
 / C:DELETE
 / C:QUERY

Rules

Rule: required-types

The server MUST implement these standard exchange types: fanout, direct.

Scenario: Client attempts to declare an exchange with each of these standard types.

Command Classes

213

Rule: recommended-types

The server SHOULD implement these standard exchange types: topic, headers.

Scenario: Client attempts to declare an exchange with each of these standard types.

Rule: required-instances

The server MUST, in each virtual host, pre-declare an exchange instance for each standard exchange type
that it implements, where the name of the exchange instance, if defined, is "amq." followed by the exchange
type name. The server MUST, in each virtual host, pre-declare at least two direct exchange instances: one
named "amq.direct", the other with no public name that serves as a default exchange for publish commands
(such as message.transfer).

Scenario: Client creates a temporary queue and attempts to bind to each required exchange instance
("amq.fanout", "amq.direct", "amq.topic", and "amq.headers" if those types are defined).

Rule: default-exchange

The server MUST pre-declare a direct exchange with no public name to act as the default exchange for
content publish commands (such as message.transfer) and for default queue bindings.

Scenario: Client checks that the default exchange is active by publishing a message with a suitable routing
key but without specifying the exchange name, then ensuring that the message arrives in the queue correctly.

Rule: default-access

The default exchange MUST NOT be accessible to the client except by specifying an empty exchange name
in a content publish command (such as message.transfer). That is, the server must not let clients explicitly
bind, unbind, delete, or make any other reference to this exchange.

Rule: extensions

The server MAY implement other exchange types as wanted.

Command Classes

214

Domain: exchange.name

Name Type Description

name str8 exchange name

The exchange name is a client-selected string that identifies the exchange for publish commands. Exchange names
may consist of any mixture of digits, letters, and underscores. Exchange names are scoped by the virtual host.

Command Classes

215

Command: exchange.declare

Name declare

Code 0x1

An AMQP server MUST handle incoming exchange.declare commands.

This command creates an exchange if it does not already exist, and if the exchange exists, verifies that it is of the
correct and expected class.

Arguments

Name Type Description

exchange name required

str8 exchange type requiredtype

Each exchange belongs to one of a set of exchange types implemented by the server. The exchange
types define the functionality of the exchange - i.e. how messages are routed through it. It is not
valid or meaningful to attempt to change the type of an existing exchange.

name exchange name for unroutable messages optionalalternate-
exchange In the event that a message cannot be routed, this is the name of the exchange to which the message

will be sent. Messages transferred using message.transfer will be routed to the alternate-exchange
only if they are sent with the "none" accept-mode, and the discard-unroutable delivery property
is set to false, and there is no queue to route to for the given message according to the bindings
on this exchange.

bit do not create exchange optionalpassive

If set, the server will not create the exchange. The client can use this to check whether an exchange
exists without modifying the server state.

bit request a durable exchange optionaldurable

If set when creating a new exchange, the exchange will be marked as durable. Durable exchanges
remain active when a server restarts. Non-durable exchanges (transient exchanges) are purged if/
when a server restarts.

bit auto-delete when unused optionalauto-delete

If set, the exchange is deleted automatically when there remain no bindings between the exchange
and any queue. Such an exchange will not be automatically deleted until at least one binding has
been made to prevent the immediate deletion of the exchange upon creation.

map arguments for declaration optionalarguments

A set of arguments for the declaration. The syntax and semantics of these arguments depends on
the server implementation. This field is ignored if passive is 1.

Rules

Rule: minimum

The server SHOULD support a minimum of 16 exchanges per virtual host and ideally, impose no limit except
as defined by available resources.

Command Classes

216

Scenario: The client creates as many exchanges as it can until the server reports an error; the number of
exchanges successfully created must be at least sixteen.

Rule: empty-name

If alternate-exchange is not set (its name is an empty string), unroutable messages that would be sent to the
alternate-exchange MUST be dropped silently.

Rule: double-failure

A message which is being routed to a alternate exchange, MUST NOT be re-routed to a secondary alternate
exchange if it fails to route in the primary alternate exchange. After such a failure, the message MUST be
dropped. This prevents looping.

Rule: support

The server MUST support both durable and transient exchanges.

Rule: sticky

The server MUST ignore the durable field if the exchange already exists.

Rule: sticky

The server MUST ignore the auto-delete field if the exchange already exists.

Exceptions

Exception: reserved-names

Error: not-allowed

Exchange names starting with "amq." are reserved for pre-declared and standardized exchanges. The client
MUST NOT attempt to create an exchange starting with "amq.".

Exception: exchange-name-required

Error: invalid-argument

The name of the exchange MUST NOT be a blank or empty string.

Exception: typed

Error: not-allowed

Exchanges cannot be redeclared with different types. The client MUST NOT attempt to redeclare an existing
exchange with a different type than used in the original exchange.declare command.

Command Classes

217

Exception: exchange-type-not-found

Error: not-found

If the client attempts to create an exchange which the server does not recognize, an exception MUST be sent.

Exception: pre-existing-exchange

Error: not-allowed

If the alternate-exchange is not empty and if the exchange already exists with a different alternate-exchange,
then the declaration MUST result in an exception.

Exception: not-found

Error: not-found

If set, and the exchange does not already exist, the server MUST raise an exception.

Exception: unknown-argument

Error: not-implemented

If the arguments field contains arguments which are not understood by the server, it MUST raise an exception.

Command Classes

218

Command: exchange.delete

Name delete

Code 0x2

An AMQP server MUST handle incoming exchange.delete commands.

This command deletes an exchange. When an exchange is deleted all queue bindings on the exchange are cancelled.

Arguments

Name Type Description

exchange name required

bit delete only if unused optionalif-unused

If set, the server will only delete the exchange if it has no queue bindings. If the exchange has queue
bindings the server does not delete it but raises an exception instead.

Exceptions

Exception: exists

Error: not-found

The client MUST NOT attempt to delete an exchange that does not exist.

Exception: exchange-name-required

Error: invalid-argument

The name of the exchange MUST NOT be a missing or empty string.

Exception: used-as-alternate

Error: not-allowed

An exchange MUST NOT be deleted if it is in use as an alternate-exchange by a queue or by another
exchange.

Exception: exchange-in-use

Error: precondition-failed

If the exchange has queue bindings, and the if-unused flag is set, the server MUST NOT delete the exchange,
but MUST raise and exception.

Command Classes

219

Command: exchange.query

Name query

Code 0x3

An AMQP server MUST handle incoming exchange.query commands.

This command is used to request information on a particular exchange.

Arguments

Name Type Description

str8 the exchange name optionalname

The name of the exchange for which information is requested. If not specified explicitly the default
exchange is implied.

Result

Struct Type

Size Packing

4 2

Fields

Name Type Description

str8 indicate the exchange type optionaltype

The type of the exchange. Will be empty if the exchange is not found.

bit indicate the durability optionaldurable

The durability of the exchange, i.e. if set the exchange is durable. Will not be set if the exchange
is not found.

bit indicate an unknown exchange optionalnot-found

If set, the exchange for which information was requested is not known.

map other unspecified exchange properties optionalarguments

A set of properties of the exchange whose syntax and semantics depends on the server
implementation. Will be empty if the exchange is not found.

Command Classes

220

Command: exchange.bind

Name bind

Code 0x4

An AMQP server MUST handle incoming exchange.bind commands.

This command binds a queue to an exchange. Until a queue is bound it will not receive any messages. In a classic
messaging model, store-and-forward queues are bound to a direct exchange and subscription queues are bound to a
topic exchange.

Arguments

Name Type Description

queue.name requiredqueue

Specifies the name of the queue to bind.

exchange name name of the exchange to bind to required

str8 identifies a binding between a given exchange and queue requiredbinding-key

The binding-key uniquely identifies a binding between a given (exchange, queue) pair. Depending
on the exchange configuration, the binding key may be matched against the message routing key
in order to make routing decisions. The match algorithm depends on the exchange type. Some
exchange types may ignore the binding key when making routing decisions. Refer to the specific
exchange type documentation. The meaning of an empty binding key depends on the exchange
implementation.

map arguments for binding optionalarguments

A set of arguments for the binding. The syntax and semantics of these arguments depends on the
exchange class.

Rules

Rule: duplicates

A server MUST ignore duplicate bindings - that is, two or more bind commands with the same exchange,
queue, and binding-key - without treating these as an error. The value of the arguments used for the binding
MUST NOT be altered by subsequent binding requests.

Scenario: A client binds a named queue to an exchange. The client then repeats the bind (with identical
exchange, queue, and binding-key). The second binding should use a different value for the arguments field.

Rule: durable-exchange

Bindings between durable queues and durable exchanges are automatically durable and the server MUST
restore such bindings after a server restart.

Scenario: A server creates a named durable queue and binds it to a durable exchange. The server is
restarted. The client then attempts to use the queue/exchange combination.

Command Classes

221

Rule: binding-count

The server SHOULD support at least 4 bindings per queue, and ideally, impose no limit except as defined
by available resources.

Scenario: A client creates a named queue and attempts to bind it to 4 different exchanges.

Rule: multiple-bindings

Where more than one binding exists between a particular exchange instance and a particular queue instance
any given message published to that exchange should be delivered to that queue at most once, regardless
of how many distinct bindings match.

Scenario: A client creates a named queue and binds it to the same topic exchange at least three times using
intersecting binding-keys (for example, "animals.*", "animals.dogs.*", "animal.dogs.chihuahua"). Verify
that a message matching all the bindings (using previous example, routing key = "animal.dogs.chihuahua")
is delivered once only.

Exceptions

Exception: empty-queue

Error: invalid-argument

A client MUST NOT be allowed to bind a non-existent and unnamed queue (i.e. empty queue name) to an
exchange.

Scenario: A client attempts to bind with an unnamed (empty) queue name to an exchange.

Exception: queue-existence

Error: not-found

A client MUST NOT be allowed to bind a non-existent queue (i.e. not previously declared) to an exchange.

Scenario: A client attempts to bind an undeclared queue name to an exchange.

Exception: exchange-existence

Error: not-found

A client MUST NOT be allowed to bind a queue to a non-existent exchange.

Scenario: A client attempts to bind a named queue to a undeclared exchange.

Exception: exchange-name-required

Error: invalid-argument

The name of the exchange MUST NOT be a blank or empty string.

Command Classes

222

Exception: unknown-argument

Error: not-implemented

If the arguments field contains arguments which are not understood by the server, it MUST raise an exception.

Command Classes

223

Command: exchange.unbind

Name unbind

Code 0x5

An AMQP server MUST handle incoming exchange.unbind commands.

This command unbinds a queue from an exchange.

Arguments

Name Type Description

queue.name requiredqueue

Specifies the name of the queue to unbind.

name requiredexchange

The name of the exchange to unbind from.

str8 the key of the binding requiredbinding-key

Specifies the binding-key of the binding to unbind.

Exceptions

Exception: non-existent-queue

Error: not-found

If the queue does not exist the server MUST raise an exception.

Exception: non-existent-exchange

Error: not-found

If the exchange does not exist the server MUST raise an exception.

Exception: exchange-name-required

Error: invalid-argument

The name of the exchange MUST NOT be a blank or empty string.

Exception: non-existent-binding-key

Error: not-found

If there is no matching binding-key the server MUST raise an exception.

Command Classes

224

Command: exchange.bound

Name bound

Code 0x6

An AMQP server MUST handle incoming exchange.bound commands.

This command is used to request information on the bindings to a particular exchange.

Arguments

Name Type Description

str8 the exchange name optionalexchange

The name of the exchange for which binding information is being requested. If not specified
explicitly the default exchange is implied.

str8 a queue name requiredqueue

If populated then determine whether the given queue is bound to the exchange.

str8 a binding-key optionalbinding-key

If populated defines the binding-key of the binding of interest, if not populated the request will
ignore the binding-key on bindings when searching for a match.

map a set of binding arguments optionalarguments

If populated defines the arguments of the binding of interest if not populated the request will ignore
the arguments on bindings when searching for a match

Result

Struct Type

Size Packing

4 2

Fields

Name Type Description

bit indicate an unknown exchange optionalexchange-
not-found If set, the exchange for which information was requested is not known.

bit indicate an unknown queue optionalqueue-not-
found If set, the queue specified is not known.

bit indicate no matching queue optionalqueue-not-
matched A bit which if set indicates that no binding was found from the specified exchange to the specified

queue.

bit indicate no matching binding-key optionalkey-not-
matched A bit which if set indicates that no binding was found from the specified exchange with the specified

binding-key.

bit indicate no matching arguments optionalargs-not-
matched A bit which if set indicates that no binding was found from the specified exchange with the specified

arguments.

Command Classes

225

Command Classes

226

Class: queue

CodeName Description

0x8 queue work with queues

An AMQP server MUST implement the queue class.

An AMQP client MUST implement the queue class.

Methods

Code Name

declare(queue: name, alternate-exchange: exchange.name, passive: bit, durable: bit, exclusive: bit, auto-
delete: bit, arguments: map)

0x1

declare queue

delete(queue: name, if-unused: bit, if-empty: bit)0x2

delete a queue

purge(queue: name)0x3

purge a queue

query(queue: name)0x4

request information about a queue

Queues store and forward messages. Queues can be configured in the server or created at runtime. Queues must be
attached to at least one exchange in order to receive messages from publishers.

Grammar:

 queue = C:DECLARE
 / C:BIND
 / C:PURGE
 / C:DELETE
 / C:QUERY
 / C:UNBIND

Rules

Rule: any-content

A server MUST allow any content class to be sent to any queue, in any mix, and queue and deliver these
content classes independently. Note that all commands that fetch content off queues are specific to a given
content class.

Scenario: Client creates an exchange of each standard type and several queues that it binds to each
exchange. It must then successfully send each of the standard content types to each of the available queues.

Command Classes

227

Domain: queue.name

Name Type Description

name str8 queue name

The queue name identifies the queue within the virtual host. Queue names must have a length of between 1 and 255
characters inclusive, must start with a digit, letter or underscores ('_') character, and must be otherwise encoded in
UTF-8.

Command Classes

228

Command: queue.declare

Name declare

Code 0x1

An AMQP server MUST handle incoming queue.declare commands.

This command creates or checks a queue. When creating a new queue the client can specify various properties that
control the durability of the queue and its contents, and the level of sharing for the queue.

Arguments

Name Type Description

queue name required

exchange.nameexchange name for messages with exceptions optionalalternate-
exchange The alternate-exchange field specifies how messages on this queue should be treated when they are

rejected by a subscriber, or when they are orphaned by queue deletion. When present, rejected or
orphaned messages MUST be routed to the alternate-exchange. In all cases the messages MUST
be removed from the queue.

bit do not create queue optionalpassive

If set, the server will not create the queue. This field allows the client to assert the presence of a
queue without modifying the server state.

bit request a durable queue optionaldurable

If set when creating a new queue, the queue will be marked as durable. Durable queues remain
active when a server restarts. Non-durable queues (transient queues) are purged if/when a server
restarts. Note that durable queues do not necessarily hold persistent messages, although it does not
make sense to send persistent messages to a transient queue.

bit request an exclusive queue optionalexclusive

Exclusive queues can only be used from one session at a time. Once a session declares an exclusive
queue, that queue cannot be used by any other session until the declaring session closes.

bit auto-delete queue when unused optionalauto-delete

If this field is set and the exclusive field is also set, then the queue MUST be deleted when the
session closes. If this field is set and the exclusive field is not set the queue is deleted when all the
consumers have finished using it. Last consumer can be cancelled either explicitly or because its
session is closed. If there was no consumer ever on the queue, it won't be deleted.

map arguments for declaration optionalarguments

A set of arguments for the declaration. The syntax and semantics of these arguments depends on
the server implementation. This field is ignored if passive is 1.

Rules

Rule: default-binding

The server MUST create a default binding for a newly-created queue to the default exchange, which is an
exchange of type 'direct' and use the queue name as the binding-key.

Command Classes

229

Scenario: Client creates a new queue, and then without explicitly binding it to an exchange, attempts to
send a message through the default exchange binding, i.e. publish a message to the empty exchange, with
the queue name as binding-key.

Rule: minimum-queues

The server SHOULD support a minimum of 256 queues per virtual host and ideally, impose no limit except
as defined by available resources.

Scenario: Client attempts to create as many queues as it can until the server reports an error. The resulting
count must at least be 256.

Rule: persistence

The queue definition MUST survive the server losing all transient memory, e.g. a machine restart.

Scenario: Client creates a durable queue; server is then restarted. Client then attempts to send message
to the queue. The message should be successfully delivered.

Rule: types

The server MUST support both durable and transient queues.

Scenario: A client creates two named queues, one durable and one transient.

Rule: pre-existence

The server MUST ignore the durable field if the queue already exists.

Scenario: A client creates two named queues, one durable and one transient. The client then attempts to
declare the two queues using the same names again, but reversing the value of the durable flag in each case.
Verify that the queues still exist with the original durable flag values.

Rule: types

The server MUST support both exclusive (private) and non-exclusive (shared) queues.

Scenario: A client creates two named queues, one exclusive and one non-exclusive.

Rule: pre-existence

The server MUST ignore the auto-delete field if the queue already exists.

Scenario: A client creates two named queues, one as auto-delete and one explicit-delete. The client then
attempts to declare the two queues using the same names again, but reversing the value of the auto-delete
field in each case. Verify that the queues still exist with the original auto-delete flag values.

Exceptions

Exception: reserved-prefix

Error: not-allowed

Command Classes

230

Queue names starting with "amq." are reserved for pre-declared and standardized server queues. A client
MUST NOT attempt to declare a queue with a name that starts with "amq." and the passive option set to zero.

Scenario: A client attempts to create a queue with a name starting with "amq." and with the passive
option set to zero.

Exception: pre-existing-exchange

Error: not-allowed

If the alternate-exchange is not empty and if the queue already exists with a different alternate-exchange,
then the declaration MUST result in an exception.

Exception: unknown-exchange

Error: not-found

if the alternate-exchange does not match the name of any existing exchange on the server, then an exception
must be raised.

Exception: passive

Error: not-found

The client MAY ask the server to assert that a queue exists without creating the queue if not. If the queue
does not exist, the server treats this as a failure.

Scenario: Client declares an existing queue with the passive option and expects the command to succeed.
Client then attempts to declare a non-existent queue with the passive option, and the server must close the
session with the correct exception.

Exception: in-use

Error: resource-locked

If the server receives a declare, bind, consume or get request for a queue that has been declared as exclusive
by an existing client session, it MUST raise an exception.

Scenario: A client declares an exclusive named queue. A second client on a different session attempts
to declare a queue of the same name.

Exception: unknown-argument

Error: not-implemented

If the arguments field contains arguments which are not understood by the server, it MUST raise an exception.

Command Classes

231

Command: queue.delete

Name delete

Code 0x2

An AMQP server MUST handle incoming queue.delete commands.

This command deletes a queue. When a queue is deleted any pending messages are sent to the alternate-exchange if
defined, or discarded if it is not.

Arguments

Name Type Description

name requiredqueue

Specifies the name of the queue to delete.

bit delete only if unused optionalif-unused

If set, the server will only delete the queue if it has no consumers. If the queue has consumers the
server does does not delete it but raises an exception instead.

bit delete only if empty optionalif-empty

If set, the server will only delete the queue if it has no messages.

Exceptions

Exception: empty-name

Error: invalid-argument

If the queue name in this command is empty, the server MUST raise an exception.

Exception: queue-exists

Error: not-found

The queue must exist. If the client attempts to delete a non-existing queue the server MUST raise an
exception.

Exception: if-unused-flag

Error: precondition-failed

The server MUST respect the if-unused flag when deleting a queue.

Exception: not-empty

Error: precondition-failed

If the queue is not empty the server MUST raise an exception.

Command Classes

232

Command: queue.purge

Name purge

Code 0x3

An AMQP server MUST handle incoming queue.purge commands.

This command removes all messages from a queue. It does not cancel subscribers. Purged messages are deleted without
any formal "undo" mechanism.

Arguments

Name Type Description

name requiredqueue

Specifies the name of the queue to purge.

Rules

Rule: empty

A call to purge MUST result in an empty queue.

Rule: pending-messages

The server MUST NOT purge messages that have already been sent to a client but not yet accepted.

Rule: purge-recovery

The server MAY implement a purge queue or log that allows system administrators to recover accidentally-
purged messages. The server SHOULD NOT keep purged messages in the same storage spaces as the live
messages since the volumes of purged messages may get very large.

Exceptions

Exception: empty-name

Error: invalid-argument

If the the queue name in this command is empty, the server MUST raise an exception.

Exception: queue-exists

Error: not-found

The queue MUST exist. Attempting to purge a non-existing queue MUST cause an exception.

Command Classes

233

Command: queue.query

Name query

Code 0x4

An AMQP server MUST handle incoming queue.query commands.

This command requests information about a queue.

Arguments

Name Type Description

queue name the queried queue required

Result

Struct Type

Size Packing

4 2

Fields

Name Type Description

name requiredqueue

Reports the name of the queue.

alternate-
exchange

exchange.name optional

durable bit optional

exclusive bit optional

auto-delete bit optional

arguments map optional

uint32 number of messages in queue requiredmessage-
count Reports the number of messages in the queue.

uint32 number of subscribers requiredsubscriber-
count Reports the number of subscribers for the queue.

Command Classes

234

Class: file

CodeName Description

0x9 file work with file content

An AMQP server MAY implement the file class.

An AMQP client MAY implement the file class.

Methods

Code Name

qos(prefetch-size: uint32, prefetch-count: uint16, global: bit)0x1

specify quality of service

qos-ok()0x2

confirm the requested qos

consume(queue: queue.name, consumer-tag: str8, no-local: bit, no-ack: bit, exclusive: bit, nowait: bit,
arguments: map)

0x3

start a queue consumer

consume-ok(consumer-tag: str8)0x4

confirm a new consumer

cancel(consumer-tag: str8)0x5

end a queue consumer

open(identifier: str8, content-size: uint64)0x6

request to start staging

open-ok(staged-size: uint64)0x7

confirm staging ready

stage()0x8

stage message content

publish(exchange: exchange.name, routing-key: str8, mandatory: bit, immediate: bit, identifier: str8)0x9

publish a message

return(reply-code: return-code, reply-text: str8, exchange: exchange.name, routing-key: str8)0xa

return a failed message

deliver(consumer-tag: str8, delivery-tag: uint64, redelivered: bit, exchange: exchange.name, routing-key:
str8, identifier: str8)

0xb

notify the client of a consumer message

ack(delivery-tag: uint64, multiple: bit)0xc

acknowledge one or more messages

reject(delivery-tag: uint64, requeue: bit)0xd

reject an incoming message

The file class provides commands that support reliable file transfer. File messages have a specific set of properties that
are required for interoperability with file transfer applications. File messages and acknowledgements are subject to

Command Classes

235

session transactions. Note that the file class does not provide message browsing commands; these are not compatible
with the staging model. Applications that need browsable file transfer should use Message content and the Message
class.

Grammar:

 file = C:QOS S:QOS-OK
 / C:CONSUME S:CONSUME-OK
 / C:CANCEL
 / C:OPEN S:OPEN-OK C:STAGE content
 / S:OPEN C:OPEN-OK S:STAGE content
 / C:PUBLISH
 / S:DELIVER
 / S:RETURN
 / C:ACK
 / C:REJECT

Rules

Rule: reliable-storage

The server MUST make a best-effort to hold file messages on a reliable storage mechanism.

Rule: no-discard

The server MUST NOT discard a file message in case of a queue overflow. The server MUST use the
Session.Flow command to slow or stop a file message publisher when necessary.

Rule: priority-levels

The server MUST implement at least 2 priority levels for file messages, where priorities 0-4 and 5-9 are
treated as two distinct levels. The server MAY implement up to 10 priority levels.

Rule: acknowledgement-support

The server MUST support both automatic and explicit acknowledgements on file content.

Command Classes

236

Domain: file.file-properties

Struct Type

Size Packing

4 2

Fields

Name Type Description

content-
type

str8 MIME content type optional

content-
encoding

str8 MIME content encoding optional

headers map message header field table optional

priority uint8 message priority, 0 to 9 optional

reply-to str8 destination to reply to optional

message-id str8 application message identifier optional

filename str8 message filename optional

timestamp datetime message timestamp optional

cluster-id str8 intra-cluster routing identifier optional

Command Classes

237

Domain: file.return-code

Name Type Description

return-code uint16 return code from server

The return code. The AMQP return codes are defined by this enum.

Valid Values

Value Name Description

311 content-
too-large

The client attempted to transfer content larger than the server could accept.

312 no-route The exchange cannot route a message, most likely due to an invalid routing key.
Only when the mandatory flag is set.

313 no-
consumers

The exchange cannot deliver to a consumer when the immediate flag is set. As a
result of pending data on the queue or the absence of any consumers of the queue.

Command Classes

238

Command: file.qos

Name qos

Code 0x1

Response qos-ok

An AMQP server MUST handle incoming file.qos commands (if the file class is implemented).

This command requests a specific quality of service. The QoS can be specified for the current session or for all sessions
on the connection. The particular properties and semantics of a qos command always depend on the content class
semantics. Though the qos command could in principle apply to both peers, it is currently meaningful only for the
server.

Arguments

Name Type Description

uint32 pre-fetch window in octets optionalprefetch-
size The client can request that messages be sent in advance so that when the client finishes processing

a message, the following message is already held locally, rather than needing to be sent within the
session. Pre-fetching gives a performance improvement. This field specifies the pre-fetch window
size in octets. May be set to zero, meaning "no specific limit". Note that other pre-fetch limits may
still apply. The prefetch-size is ignored if the no-ack option is set.

uint16 pre-fetch window in messages optionalprefetch-
count Specifies a pre-fetch window in terms of whole messages. This is compatible with some file API

implementations. This field may be used in combination with the prefetch-size field; a message
will only be sent in advance if both pre-fetch windows (and those at the session and connection
level) allow it. The prefetch-count is ignored if the no-ack option is set.

bit apply to entire connection optionalglobal

By default the QoS settings apply to the current session only. If this field is set, they are applied
to the entire connection.

Rules

Rule: prefetch-discretion

The server MAY send less data in advance than allowed by the client's specified pre-fetch windows but it
MUST NOT send more.

Command Classes

239

Command: file.qos-ok

Name qos-ok

Code 0x2

An AMQP client MUST handle incoming file.qos-ok commands (if the file class is implemented).

This command tells the client that the requested QoS levels could be handled by the server. The requested QoS applies
to all active consumers until a new QoS is defined.

Command Classes

240

Command: file.consume

Name consume

Code 0x3

Response consume-ok

An AMQP server MUST handle incoming file.consume commands (if the file class is implemented).

This command asks the server to start a "consumer", which is a transient request for messages from a specific queue.
Consumers last as long as the session they were created on, or until the client cancels them.

Arguments

Name Type Description

queue.name optionalqueue

Specifies the name of the queue to consume from.

str8 optionalconsumer-
tag Specifies the identifier for the consumer. The consumer tag is local to a connection, so two clients

can use the same consumer tags.

bit optionalno-local

If the no-local field is set the server will not send messages to the connection that published them.

bit no acknowledgement needed optionalno-ack

If this field is set the server does not expect acknowledgements for messages. That is, when a
message is delivered to the client the server automatically and silently acknowledges it on behalf
of the client. This functionality increases performance but at the cost of reliability. Messages can
get lost if a client dies before it can deliver them to the application.

bit request exclusive access optionalexclusive

Request exclusive consumer access, meaning only this consumer can access the queue.

bit do not send a reply command optionalnowait

If set, the server will not respond to the command. The client should not wait for a reply command.
If the server could not complete the command it will raise an exception.

map arguments for consuming optionalarguments

A set of arguments for the consume. The syntax and semantics of these arguments depends on the
providers implementation.

Rules

Rule: min-consumers

The server SHOULD support at least 16 consumers per queue, unless the queue was declared as private, and
ideally, impose no limit except as defined by available resources.

Exceptions

Exception: queue-exists-if-empty

Error: not-allowed

Command Classes

241

If the queue name in this command is empty, the server MUST raise an exception.

Exception: not-existing-consumer

Error: not-allowed

The tag MUST NOT refer to an existing consumer. If the client attempts to create two consumers with the
same non-empty tag the server MUST raise an exception.

Exception: not-empty-consumer-tag

Error: not-allowed

The client MUST NOT specify a tag that is empty or blank.

Scenario: Attempt to create a consumers with an empty tag.

Exception: in-use

Error: resource-locked

If the server cannot grant exclusive access to the queue when asked, - because there are other consumers
active - it MUST raise an exception.

Command Classes

242

Command: file.consume-ok

Name consume-ok

Code 0x4

An AMQP client MUST handle incoming file.consume-ok commands (if the file class is implemented).

This command provides the client with a consumer tag which it MUST use in commands that work with the consumer.

Arguments

Name Type Description

str8 optionalconsumer-
tag Holds the consumer tag specified by the client or provided by the server.

Command Classes

243

Command: file.cancel

Name cancel

Code 0x5

An AMQP server MUST handle incoming file.cancel commands (if the file class is implemented).

This command cancels a consumer. This does not affect already delivered messages, but it does mean the server will
not send any more messages for that consumer.

Arguments

Name Type Description

str8 optionalconsumer-
tag the identifier of the consumer to be cancelled.

Command Classes

244

Command: file.open

Name open

Code 0x6

Response open-ok

An AMQP server MUST handle incoming file.open commands (if the file class is implemented).

An AMQP client MUST handle incoming file.open commands (if the file class is implemented).

This command requests permission to start staging a message. Staging means sending the message into a temporary
area at the recipient end and then delivering the message by referring to this temporary area. Staging is how the protocol
handles partial file transfers - if a message is partially staged and the connection breaks, the next time the sender starts
to stage it, it can restart from where it left off.

Arguments

Name Type Description

str8 staging identifier optionalidentifier

This is the staging identifier. This is an arbitrary string chosen by the sender. For staging to work
correctly the sender must use the same staging identifier when staging the same message a second
time after recovery from a failure. A good choice for the staging identifier would be the SHA1 hash
of the message properties data (including the original filename, revised time, etc.).

uint64 message content size optionalcontent-
size The size of the content in octets. The recipient may use this information to allocate or check

available space in advance, to avoid "disk full" errors during staging of very large messages.

Rules

Rule: content-size

The sender MUST accurately fill the content-size field. Zero-length content is permitted.

Command Classes

245

Command: file.open-ok

Name open-ok

Code 0x7

Response stage

An AMQP server MUST handle incoming file.open-ok commands (if the file class is implemented).

An AMQP client MUST handle incoming file.open-ok commands (if the file class is implemented).

This command confirms that the recipient is ready to accept staged data. If the message was already partially-staged
at a previous time the recipient will report the number of octets already staged.

Arguments

Name Type Description

uint64 already staged amount optionalstaged-size

The amount of previously-staged content in octets. For a new message this will be zero.

Rules

Rule: behavior

The sender MUST start sending data from this octet offset in the message, counting from zero.

Rule: staging

The recipient MAY decide how long to hold partially-staged content and MAY implement staging by always
discarding partially-staged content. However if it uses the file content type it MUST support the staging
commands.

Command Classes

246

Command: file.stage

Name stage

Code 0x8

An AMQP server MUST handle incoming file.stage commands (if the file class is implemented).

An AMQP client MUST handle incoming file.stage commands (if the file class is implemented).

This command stages the message, sending the message content to the recipient from the octet offset specified in the
Open-Ok command.

Segments
Following the command segment, the following segments may follow.

header

This segment MUST be present.

The header segment consists of at most one of each of the following entries:

• file-properties [optional].

body

This segment is optional.

The body segment consists of opaque binary data (i.e. the message body).

Command Classes

247

Command: file.publish

Name publish

Code 0x9

An AMQP server MUST handle incoming file.publish commands (if the file class is implemented).

This command publishes a staged file message to a specific exchange. The file message will be routed to queues
as defined by the exchange configuration and distributed to any active consumers when the transaction, if any, is
committed.

Arguments

Name Type Description

exchange.name optionalexchange

Specifies the name of the exchange to publish to. The exchange name can be empty, meaning the
default exchange. If the exchange name is specified, and that exchange does not exist, the server
will raise an exception.

str8 Message routing key optionalrouting-key

Specifies the routing key for the message. The routing key is used for routing messages depending
on the exchange configuration.

bit indicate mandatory routing optionalmandatory

This flag tells the server how to react if the message cannot be routed to a queue. If this flag is
set, the server will return an unroutable message with a Return command. If this flag is zero, the
server silently drops the message.

bit request immediate delivery optionalimmediate

This flag tells the server how to react if the message cannot be routed to a queue consumer
immediately. If this flag is set, the server will return an undeliverable message with a Return
command. If this flag is zero, the server will queue the message, but with no guarantee that it will
ever be consumed.

str8 staging identifier optionalidentifier

This is the staging identifier of the message to publish. The message must have been staged. Note
that a client can send the Publish command asynchronously without waiting for staging to finish.

Rules

Rule: default

The server MUST accept a blank exchange name to mean the default exchange.

Rule: implementation

The server SHOULD implement the mandatory flag.

Rule: implementation

The server SHOULD implement the immediate flag.

Command Classes

248

Exceptions

Exception: refusal

Error: not-implemented

The exchange MAY refuse file content in which case it MUST send an exception.

Command Classes

249

Command: file.return

Name return

Code 0xa

An AMQP client MUST handle incoming file.return commands (if the file class is implemented).

This command returns an undeliverable message that was published with the "immediate" flag set, or an unroutable
message published with the "mandatory" flag set. The reply code and text provide information about the reason that
the message was undeliverable.

Arguments

Name Type Description

reply-code return-code optional

str8 The localized reply text. optionalreply-text

This text can be logged as an aid to resolving issues.

exchange.name optionalexchange

Specifies the name of the exchange that the message was originally published to.

str8 Message routing key optionalrouting-key

Specifies the routing key name specified when the message was published.

Segments
Following the command segment, the following segments may follow.

header

This segment MUST be present.

The header segment consists of at most one of each of the following entries:

• file-properties [optional].

body

This segment is optional.

The body segment consists of opaque binary data (i.e. the message body).

Command Classes

250

Command: file.deliver

Name deliver

Code 0xb

An AMQP client MUST handle incoming file.deliver commands (if the file class is implemented).

This command delivers a staged file message to the client, via a consumer. In the asynchronous message delivery
model, the client starts a consumer using the consume command, then the server responds with Deliver commands as
and when messages arrive for that consumer.

Arguments

Name Type Description

consumer-
tag

str8 optional

uint64 optionaldelivery-
tag The server-assigned and session-specific delivery tag

bit Indicate possible duplicate delivery optionalredelivered

This boolean flag indicates that the message may have been previously delivered to this or another
client.

exchange.name optionalexchange

Specifies the name of the exchange that the message was originally published to.

str8 Message routing key optionalrouting-key

Specifies the routing key name specified when the message was published.

str8 staging identifier optionalidentifier

This is the staging identifier of the message to deliver. The message must have been staged. Note
that a server can send the Deliver command asynchronously without waiting for staging to finish.

Rules

Rule: redelivery-tracking

The server SHOULD track the number of times a message has been delivered to clients and when a message
is redelivered a certain number of times - e.g. 5 times - without being acknowledged, the server SHOULD
consider the message to be non-processable (possibly causing client applications to abort), and move the
message to a dead letter queue.

Rule: non-zero

The server MUST NOT use a zero value for delivery tags. Zero is reserved for client use, meaning "all
messages so far received".

Command Classes

251

Command: file.ack

Name ack

Code 0xc

An AMQP server MUST handle incoming file.ack commands (if the file class is implemented).

This command acknowledges one or more messages delivered via the Deliver command. The client can ask to confirm
a single message or a set of messages up to and including a specific message.

Arguments

Name Type Description

uint64 optionaldelivery-
tag The identifier of the message being acknowledged

bit acknowledge multiple messages optionalmultiple

If set to 1, the delivery tag is treated as "up to and including", so that the client can acknowledge
multiple messages with a single command. If set to zero, the delivery tag refers to a single message.
If the multiple field is 1, and the delivery tag is zero, tells the server to acknowledge all outstanding
messages.

Rules

Rule: session-local

The delivery tag is valid only within the session from which the message was received. i.e. A client MUST
NOT receive a message on one session and then acknowledge it on another.

Rule: validation

The server MUST validate that a non-zero delivery-tag refers to an delivered message, and raise an exception
if this is not the case.

Command Classes

252

Command: file.reject

Name reject

Code 0xd

An AMQP server MUST handle incoming file.reject commands (if the file class is implemented).

This command allows a client to reject a message. It can be used to return untreatable messages to their original queue.
Note that file content is staged before delivery, so the client will not use this command to interrupt delivery of a large
message.

Arguments

Name Type Description

uint64 optionaldelivery-
tag the identifier of the message to be rejected

bit requeue the message optionalrequeue

If this field is zero, the message will be discarded. If this bit is 1, the server will attempt to requeue
the message.

Rules

Rule: server-interpretation

The server SHOULD interpret this command as meaning that the client is unable to process the message
at this time.

Rule: not-selection

A client MUST NOT use this command as a means of selecting messages to process. A rejected message
MAY be discarded or dead-lettered, not necessarily passed to another client.

Rule: session-local

The delivery tag is valid only within the session from which the message was received. i.e. A client MUST
NOT receive a message on one session and then reject it on another.

Rule: requeue-strategy

The server MUST NOT deliver the message to the same client within the context of the current session.
The recommended strategy is to attempt to deliver the message to an alternative consumer, and if that is not
possible, to move the message to a dead-letter queue. The server MAY use more sophisticated tracking to
hold the message on the queue and redeliver it to the same client at a later stage.

Command Classes

253

Class: stream

CodeName Description

0xa stream work with streaming content

An AMQP server MAY implement the stream class.

An AMQP client MAY implement the stream class.

Methods

Code Name

qos(prefetch-size: uint32, prefetch-count: uint16, consume-rate: uint32, global: bit)0x1

specify quality of service

qos-ok()0x2

confirm the requested qos

consume(queue: queue.name, consumer-tag: str8, no-local: bit, exclusive: bit, nowait: bit, arguments: map)0x3

start a queue consumer

consume-ok(consumer-tag: str8)0x4

confirm a new consumer

cancel(consumer-tag: str8)0x5

end a queue consumer

publish(exchange: exchange.name, routing-key: str8, mandatory: bit, immediate: bit)0x6

publish a message

return(reply-code: return-code, reply-text: str8, exchange: exchange.name, routing-key: str8)0x7

return a failed message

deliver(consumer-tag: str8, delivery-tag: uint64, exchange: exchange.name, queue: queue.name)0x8

notify the client of a consumer message

The stream class provides commands that support multimedia streaming. The stream class uses the following
semantics: one message is one packet of data; delivery is unacknowledged and unreliable; the consumer can specify
quality of service parameters that the server can try to adhere to; lower-priority messages may be discarded in favor
of high priority messages.

Grammar:

 stream = C:QOS S:QOS-OK
 / C:CONSUME S:CONSUME-OK
 / C:CANCEL
 / C:PUBLISH content
 / S:RETURN
 / S:DELIVER content

Command Classes

254

Rules

Rule: overflow-discard

The server SHOULD discard stream messages on a priority basis if the queue size exceeds some configured
limit.

Rule: priority-levels

The server MUST implement at least 2 priority levels for stream messages, where priorities 0-4 and 5-9 are
treated as two distinct levels. The server MAY implement up to 10 priority levels.

Rule: acknowledgement-support

The server MUST implement automatic acknowledgements on stream content. That is, as soon as a message
is delivered to a client via a Deliver command, the server must remove it from the queue.

Command Classes

255

Domain: stream.stream-properties

Struct Type

Size Packing

4 2

Fields

Name Type Description

content-
type

str8 MIME content type optional

content-
encoding

str8 MIME content encoding optional

headers map message header field table optional

priority uint8 message priority, 0 to 9 optional

timestamp datetime message timestamp optional

Command Classes

256

Domain: stream.return-code

Name Type Description

return-code uint16 return code from server

The return code. The AMQP return codes are defined by this enum.

Valid Values

Value Name Description

311 content-
too-large

The client attempted to transfer content larger than the server could accept.

312 no-route The exchange cannot route a message, most likely due to an invalid routing key.
Only when the mandatory flag is set.

313 no-
consumers

The exchange cannot deliver to a consumer when the immediate flag is set. As a
result of pending data on the queue or the absence of any consumers of the queue.

Command Classes

257

Command: stream.qos

Name qos

Code 0x1

Response qos-ok

An AMQP server MUST handle incoming stream.qos commands (if the stream class is implemented).

This command requests a specific quality of service. The QoS can be specified for the current session or for all sessions
on the connection. The particular properties and semantics of a qos command always depend on the content class
semantics. Though the qos command could in principle apply to both peers, it is currently meaningful only for the
server.

Arguments

Name Type Description

uint32 pre-fetch window in octets optionalprefetch-
size The client can request that messages be sent in advance so that when the client finishes processing

a message, the following message is already held locally, rather than needing to be sent within the
session. Pre-fetching gives a performance improvement. This field specifies the pre-fetch window
size in octets. May be set to zero, meaning "no specific limit". Note that other pre-fetch limits may
still apply.

uint16 pre-fetch window in messages optionalprefetch-
count Specifies a pre-fetch window in terms of whole messages. This field may be used in combination

with the prefetch-size field; a message will only be sent in advance if both pre-fetch windows (and
those at the session and connection level) allow it.

uint32 transfer rate in octets/second optionalconsume-
rate Specifies a desired transfer rate in octets per second. This is usually determined by the application

that uses the streaming data. A value of zero means "no limit", i.e. as rapidly as possible.

bit apply to entire connection optionalglobal

By default the QoS settings apply to the current session only. If this field is set, they are applied
to the entire connection.

Rules

Rule: ignore-prefetch

The server MAY ignore the pre-fetch values and consume rates, depending on the type of stream and the
ability of the server to queue and/or reply it.

Rule: drop-by-priority

The server MAY drop low-priority messages in favor of high-priority messages.

Command Classes

258

Command: stream.qos-ok

Name qos-ok

Code 0x2

An AMQP client MUST handle incoming stream.qos-ok commands (if the stream class is implemented).

This command tells the client that the requested QoS levels could be handled by the server. The requested QoS applies
to all active consumers until a new QoS is defined.

Command Classes

259

Command: stream.consume

Name consume

Code 0x3

Response consume-ok

An AMQP server MUST handle incoming stream.consume commands (if the stream class is implemented).

This command asks the server to start a "consumer", which is a transient request for messages from a specific queue.
Consumers last as long as the session they were created on, or until the client cancels them.

Arguments

Name Type Description

queue.name optionalqueue

Specifies the name of the queue to consume from.

str8 optionalconsumer-
tag Specifies the identifier for the consumer. The consumer tag is local to a connection, so two clients

can use the same consumer tags.

bit optionalno-local

If the no-local field is set the server will not send messages to the connection that published them.

bit request exclusive access optionalexclusive

Request exclusive consumer access, meaning only this consumer can access the queue.

bit do not send a reply command optionalnowait

If set, the server will not respond to the command. The client should not wait for a reply command.
If the server could not complete the command it will raise an exception.

map arguments for consuming optionalarguments

A set of arguments for the consume. The syntax and semantics of these arguments depends on the
providers implementation.

Rules

Rule: min-consumers

The server SHOULD support at least 16 consumers per queue, unless the queue was declared as private, and
ideally, impose no limit except as defined by available resources.

Rule: priority-based-delivery

Streaming applications SHOULD use different sessions to select different streaming resolutions. AMQP
makes no provision for filtering and/or transforming streams except on the basis of priority-based selective
delivery of individual messages.

Exceptions

Exception: queue-exists-if-empty

Error: not-allowed

Command Classes

260

If the queue name in this command is empty, the server MUST raise an exception.

Exception: not-existing-consumer

Error: not-allowed

The tag MUST NOT refer to an existing consumer. If the client attempts to create two consumers with the
same non-empty tag the server MUST raise an exception.

Exception: not-empty-consumer-tag

Error: not-allowed

The client MUST NOT specify a tag that is empty or blank.

Scenario: Attempt to create a consumers with an empty tag.

Exception: in-use

Error: resource-locked

If the server cannot grant exclusive access to the queue when asked, - because there are other consumers
active - it MUST raise an exception with return code 405 (resource locked).

Command Classes

261

Command: stream.consume-ok

Name consume-ok

Code 0x4

An AMQP client MUST handle incoming stream.consume-ok commands (if the stream class is implemented).

This command provides the client with a consumer tag which it may use in commands that work with the consumer.

Arguments

Name Type Description

str8 optionalconsumer-
tag Holds the consumer tag specified by the client or provided by the server.

Command Classes

262

Command: stream.cancel

Name cancel

Code 0x5

An AMQP server MUST handle incoming stream.cancel commands (if the stream class is implemented).

This command cancels a consumer. Since message delivery is asynchronous the client may continue to receive
messages for a short while after cancelling a consumer. It may process or discard these as appropriate.

Arguments

Name Type Description

consumer-
tag

str8 optional

Command Classes

263

Command: stream.publish

Name publish

Code 0x6

An AMQP server MUST handle incoming stream.publish commands (if the stream class is implemented).

This command publishes a message to a specific exchange. The message will be routed to queues as defined by the
exchange configuration and distributed to any active consumers as appropriate.

Arguments

Name Type Description

exchange.name optionalexchange

Specifies the name of the exchange to publish to. The exchange name can be empty, meaning the
default exchange. If the exchange name is specified, and that exchange does not exist, the server
will raise an exception.

str8 Message routing key optionalrouting-key

Specifies the routing key for the message. The routing key is used for routing messages depending
on the exchange configuration.

bit indicate mandatory routing optionalmandatory

This flag tells the server how to react if the message cannot be routed to a queue. If this flag is
set, the server will return an unroutable message with a Return command. If this flag is zero, the
server silently drops the message.

bit request immediate delivery optionalimmediate

This flag tells the server how to react if the message cannot be routed to a queue consumer
immediately. If this flag is set, the server will return an undeliverable message with a Return
command. If this flag is zero, the server will queue the message, but with no guarantee that it will
ever be consumed.

Segments
Following the command segment, the following segments may follow.

header

This segment MUST be present.

The header segment consists of at most one of each of the following entries:

• stream-properties [optional].

body

This segment is optional.

The body segment consists of opaque binary data (i.e. the message body).

Command Classes

264

Rules

Rule: default

The server MUST accept a blank exchange name to mean the default exchange.

Rule: implementation

The server SHOULD implement the mandatory flag.

Rule: implementation

The server SHOULD implement the immediate flag.

Exceptions

Exception: refusal

Error: not-implemented

The exchange MAY refuse stream content in which case it MUST respond with an exception.

Command Classes

265

Command: stream.return

Name return

Code 0x7

An AMQP client MUST handle incoming stream.return commands (if the stream class is implemented).

This command returns an undeliverable message that was published with the "immediate" flag set, or an unroutable
message published with the "mandatory" flag set. The reply code and text provide information about the reason that
the message was undeliverable.

Arguments

Name Type Description

reply-code return-code optional

str8 The localized reply text. optionalreply-text

The localized reply text. This text can be logged as an aid to resolving issues.

exchange.name optionalexchange

Specifies the name of the exchange that the message was originally published to.

str8 Message routing key optionalrouting-key

Specifies the routing key name specified when the message was published.

Segments
Following the command segment, the following segments may follow.

header

This segment MUST be present.

The header segment consists of at most one of each of the following entries:

• stream-properties [optional].

body

This segment is optional.

The body segment consists of opaque binary data (i.e. the message body).

Command Classes

266

Command: stream.deliver

Name deliver

Code 0x8

An AMQP client MUST handle incoming stream.deliver commands (if the stream class is implemented).

This command delivers a message to the client, via a consumer. In the asynchronous message delivery model, the
client starts a consumer using the Consume command, then the server responds with Deliver commands as and when
messages arrive for that consumer.

Arguments

Name Type Description

consumer-
tag

str8 optional

uint64 optionaldelivery-
tag The server-assigned and session-specific delivery tag

exchange.name optionalexchange

Specifies the name of the exchange that the message was originally published to.

queue.name requiredqueue

Specifies the name of the queue that the message came from. Note that a single session can start
many consumers on different queues.

Segments
Following the command segment, the following segments may follow.

header

This segment MUST be present.

The header segment consists of at most one of each of the following entries:

• stream-properties [optional].

body

This segment is optional.

The body segment consists of opaque binary data (i.e. the message body).

Rules

Rule: session-local

The delivery tag is valid only within the session from which the message was received. i.e. A client MUST
NOT receive a message on one session and then acknowledge it on another.

267

11. The Model

11.1. Exchanges

11.1.1. Mandatory Exchange Types

11.1.1.1. Direct Exchanges

Rule: exchange_type_direct

An AMQP Server MUST implement the direct exchange type.

Rule: exchange_type_direct_binding

If a message M, which has routing-key R, is sent to an exchange E of type direct; then M shall be delivered
to a queue Q if and only if there is a binding between E and Q with binding key K such that K = R (excepting
any rule which prevents this delivery).

Rule: default_exchange

An AMQP Server MUST implement an exchange of type direct with name equal to the empty string (a
str8 value of length zero). Upon creation every queue MUST be bound automatically by the server to this
exchange with a binding-key equal to the name of the queue created.

Rule: amq_direct_exchange

An AMQP Server MUST implement an exchange of type direct with name amq.direct.

11.1.1.2. Fanout Exchanges

Rule: exchange_type_fanout

An AMQP Server MUST implement the fanout exchange type.

Rule: exchange_type_fanout_binding

If a message M, which has routing-key R, is sent to an exchange E of type fanout; then M shall be delivered to
a queue Q if and only if there is a binding between E and Q (the binding-key used is unimportant) (excepting
any rule which prevents this delivery).

Rule: amq_fanout_exchange

An AMQP Server MUST implement an exchange of type fanout with name amq.fanout.

The Model

268

11.1.2. Optional Exchange Types

11.1.2.1. Headers Exchanges

Rule: exchange_type_headers

An AMQP Server SHOULD implement the headers exchange type.

Rule: headers_exchange_requires_match_arg

When creating a binding between an exchange E, of type headers and any queue Q the arguments field
MUST contain a key "x-match" to a value of type str8 which must equal either "any" or "all". If the arguments
field does not contain a key "x-match" then an exception of type invalid-argument MUST be raised.

Rule: headers_exchange_requires_match_all

Consider a message M, which has an application-headers map P, which is sent to an exchange E of type
headers. If there exists a binding between E a queue Q with binding-key K and arguments map A containg
the mapping { "x-match" -> (str8,"all") }, then message M MUST route to Q because of
binding K if and only if for every mapping {key -> (type, value)} in the binding arguments map P which does
not have a key beginning with "x-"; there is a matching mapping in the application-headers. In this context
"mtaching" means that either the same triplet of key, type, value exist in the application-headers map, or
that the mapping in the binding arguments is of the form {key -> void, }, in which case any mapping with
same key will match.
.

Rule: headers_exchange_requires_match_any

Consider a message M, which has an application-headers map P, which is sent to an exchange E of type
headers. If there exists a binding between E a queue Q with binding-key K and arguments map A containg the
mapping { "x-match" -> (str8,"all") }, then message M MUST route to Q because of binding
K if and only if there exists at least one mapping {key -> (type, value)} in the binding arguments map P which
does not have a key beginning with "x-"; for which there is a matching mapping in the application-headers.
In this context "mtaching" means that either the same triplet of key, type, value exist in the application-
headers map, or that the mapping in the binding arguments is of the form {key -> void, }, in which case
any mapping with same key will match.
.

Rule: amq_match_exchange

The server SHOULD implement the headers exchange type and in that case, the server MUST pre-declare
within each virtual host at least one exchange of type headers, named amq.match.

11.1.2.2. Topic Exchanges

Rule: exchange_type_topic

An AMQP Server SHOULD implement the topic exchange type.

The Model

269

Rule: exchange_type_topic_binding

If a message M, which has routing-key R, is sent to an exchange E of type topic; then M shall be delivered
to a queue Q if and only if there is a binding between E and Q with binding key K such that (excepting any
rule which prevents this delivery) K matches R where matching in this context means the following:

• The R is treated as zero or more more words, delimited by the '.' character.

• The binding key MUST be specified in this form and additionally supports special wild-card characters:
'*' matches a single word and '#' matches zero or more words.

Thus the routing pattern *.stock.# matches the routing keys usd.stock and eur.stock.db but not stock.nasdaq.

Rule: amq_topic_exchange

The server SHOULD implement the topic exchange type and in that case, the server MUST pre-declare
within each virtual host at least one exchange of type topic, named amq.topic.

11.1.2.3. Failover Exchanges

Rule: exchange_type_failover

An AMQP Server SHOULD implement the failover exchange type.

Rule: amq_failover_exchange

If an AMQP Server implements the failover exchange, it MUST implement an exchange of type failover
with name amq.failover.

Rule: only_one_failover_exchange

An attempt to declare an exchange of type failover except in passive mode should result in an exception
of type not-allowed.

Rule: failover_exchange_allow_private_queues

Any AMQP client MAY bind a private queue to this exchange.

Rule: failover_exchange_disallow_shared_queues

It is an error to bind a non-private queue to this exchange. Attempting to bind a queue which is not private
to an exchange of type failover MUST result in an exception of type not-allowed.

Rule: failover_exchange_behavior

Queues bound to an exchange of type failover receive messages with updated information about the set of
available failover candidates.

The failover exchange MUST emit "failover update messages" under the following circumstances:

1. When a new queue is bound to the exchange, that queue immediately receives a failover update message.

The Model

270

2. When the set of failover candidates changes, queues bound to the failover exchange receive an update.

Rule: failover_exchange_messages

A failover update message MUST have an empty body. The application-headers field of the message-
properties header MUST contain exactly one entry with name "amq.failover" and a value of type array (but
of domain amqp-url-array) containing a list of AMQP URLs.

The URL provides a list of broker addresses that the client MAY fail over to in the event of a crash or
disconnect.

Rule: failover_exchange_message_url_ordering

The broker SHOULD order the addresses in such a way that resources will be efficiently allocated if clients
consistently connect to the first address on the list. Clients SHOULD try addresses in the order listed.
However a client MAY choose any address on the list. The list MAY have a single entry or be empty
depending on the configuration of the cluster. The client MAY attempt to reconnect to the original broker
as well as the brokers listed in failover updates.

Rule: failover_exchange_message_differences

The failover exchange MAY give different failover lists to each connected queue - different order or
entirely different addresses. For example each client might receive a different random ordering of available
candidates to balance load. Another example, the broker might give different failvover lists to provide
different quality of service guarantees to different clients, or might replicate information about each clients
to a different set of backup brokers.

Rule: failover_exchange_spontaneous_disconnect

A healthy broker MAY abruptly disconnect clients without the normal connection closure protocol in order to
force a fail over for load balancing purposes. It SHOULD wait till all queues bound to the failover exchange
are empty (i.e. all clients have received the latest failover update message) but it MAY disconnect clients
that are slow to respond after a broker determined timeout.

Rule: failover_exchange_usage

Brokers that do not support fail-over are not required to provide the "amq.failover" exchange. Clients that
do not support fail-over are not required to use it.

11.1.3. System Exchanges

Rule: exchange_type_system

An AMQP Server MAY implement the system exchange type.

Rule: system_exchange_behavior

The system exchange type works as follows:

The Model

271

1. A publisher sends the exchange a message with the routing key S.

2. The system exchange passes this to a system service S.

System services starting with "amq." are reserved for AMQP usage. All other names may be used freely on
by server implementations.

Rule: system_exchange_binding_forbidden

An attempt to bind any queue to an exchange of type system MUST result in an exception of type not-allowed.

11.1.4. Implementation-defined Exchange Types

Rule: exchange_type_naming

All non-normative exchange types MUST be named starting with "x-". Exchange types that do not start with
"x-" are reserved for future use in the AMQP standard.

11.1.5. Exchange Naming

Rule: exchange_naming

Exchange names beginning "amq." are reserved for AMQP standard exchanges. An attempt to declare an
exchange with name beginning "amq." except in passive mode MUST result in an exception of type not-
allowed.

11.2. Queues

Rule: queue_naming

Queue names beginning "amq." are reserved for AMQP standard queues. An attempt to declare a queue with
name beginning "amq." except in passive mode MUST result in an exception of type not-allowed.

272

12. Protocol Grammar
12.1. Augmented BNF Rules

We use the Augmented BNF syntax defined in IETF RFC 2234. In summary,

1. The name of a rule is simply the name itself.

2. Terminals are specified by one or more numeric characters with the base interpretation of those characters indicated
as 'b', 'd' or 'x'.

3. A rule can define a simple, ordered string of values by listing a sequence of rule names.

4. A range of alternative numeric values can be specified compactly, using dash ("-") to indicate the range of
alternative values.

5. Elements enclosed in parentheses are treated as a single element, whose contents are strictly ordered.

6. Elements separated by forward slash ("/") are alternatives.

7. The operator "*" preceding an element indicates repetition. The full form is: "<a>*element", where <a> and
 are optional decimal values, indicating at least <a> and at most occurrences of element.

8. A rule of the form: "<n>element" is equivalent to <n>*<n>element.

9. Square brackets enclose an optional element sequence.

12.2. Grammar

We provide a complete grammar for AMQP:

Framing

 amqp = protocol-header *frame

 protocol-header = AMQP class instance major minor
 AMQP = "AMQP"
 protocol-class = %x01
 protocol-instance = %x01 ; AMQP over TCP
 / %x02 ; AMQP over SCTP
 major = OCTET ; major version
 minor = OCTET ; minor version

 frame = frame-header frame-body

 frame-header = flags type size %x00 %b0.0.0.0 track channel %x00.00.00.00

 flags = frame-version %b0.0 first-segment last-segment first-frame last-frame
 frame-version = 2 BIT
 first-segment = 1 BIT
 last-segment = 1 BIT
 first-frame = 1 BIT
 last-frame = 1 BIT

 type = 1 OCTET
 size = uint16
 track = 4 BIT
 channel = 2 OCTET

 frame-body = *OCTET

Protocol Grammar

273

Assemblies

 assembly = control-segment
 / command-segment [header-segment] [body-segment]

 control-segment = class-code control-code arguments
 command-segment = class-code command-code session-header arguments
 header-segment = *struct32 ; further restricted by amqp.xml
 body-segment = *OCTET

 class-code = OCTET
 control-code = OCTET
 command-code = OCTET

 session-header = ssn-hdr-flags ssn-hdr-fields
 ssn-hdr-flags = 2 OCTET ; packing flags for fields
 ssn-hdr-fields = *OCTET ; defined by session.header struct in amqp.xml

 arguments = *OCTET ; defined by amqp.xml

Types

 bin8 = OCTET

 int8 = OCTET

 uint8 = OCTET

 char = OCTET

 boolean = OCTET

 bin16 = 2 OCTET

 int16 = high-byte low-byte
 high-byte = OCTET
 low-byte = OCTET

 uint16 = high-byte low-byte
 high-byte = OCTET
 low-byte = OCTET

Protocol Grammar

274

 bin32 = 4 OCTET

 int32 = byte-four byte-three byte-two byte-one
 byte-four = OCTET ; most significant byte (MSB)
 byte-three = OCTET
 byte-two = OCTET
 byte-one = OCTET ; least significant byte (LSB)

 uint32 = byte-four byte-three byte-two byte-one
 byte-four = OCTET ; most significant byte (MSB)
 byte-three = OCTET
 byte-two = OCTET
 byte-one = OCTET ; least significant byte (LSB)

 float = 4 OCTET ; IEEE 754 32-bit floating point number

 char-utf32 = 4 OCTET ; single UTF-32 character

 sequence-no = 4 OCTET ; RFC-1982 serial number

 bin64 = 8 OCTET

 int64 = byte-eight byte-seven byte-six byte-five
 byte-four byte-three byte-two byte-one
 byte-eight = 1 OCTET ; most significant byte (MSB)
 byte-seven = 1 OCTET
 byte-six = 1 OCTET
 byte-five = 1 OCTET
 byte-four = 1 OCTET
 byte-three = 1 OCTET
 byte-two = 1 OCTET
 byte-one = 1 OCTET ; least significant byte (LSB)

 uint64 = byte-eight byte-seven byte-six byte-five
 byte-four byte-three byte-two byte-one
 byte-eight = 1 OCTET ; most significant byte (MSB)
 byte-seven = 1 OCTET
 byte-six = 1 OCTET
 byte-five = 1 OCTET
 byte-four = 1 OCTET
 byte-three = 1 OCTET
 byte-two = 1 OCTET
 byte-one = 1 OCTET ; least significant byte (LSB)

 double = 8 OCTET ; double precision IEEE 754 floating point number

Protocol Grammar

275

 datetime = 8 OCTET ; 64 bit posix time_t format

 bin128 = 16 OCTET

 uuid = 16 OCTET ; RFC-4122 section 4.1.2

 bin256 = 32 OCTET

 bin512 = 64 OCTET

 bin1024 = 128 OCTET

 vbin8 = size octets
 size = uint8
 octets = 0*255 OCTET ; size OCTETs

 str8-latin = size characters
 size = uint8
 characters = 0*255 OCTET ; size OCTETs

 str8 = size utf8-unicode
 size = uint8
 utf8-unicode = 0*255 OCTET ; size OCTETs

 str8-utf16 = size utf16-unicode
 size = uint8
 utf16-unicode = 0*255 OCTET ; size OCTETs

 vbin16 = size octets
 size = uint16
 octets = 0*65535 OCTET ; size OCTETs

 str16-latin = size characters
 size = uint16
 characters = 0*65535 OCTET ; size OCTETs

Protocol Grammar

276

 str16 = size utf8-unicode
 size = uint16
 utf8-unicode = 0*65535 OCTET ; size OCTETs

 str16-utf16 = size utf16-unicode
 size = uint16
 utf16-unicode = 0*65535 OCTET ; size OCTETs

 byte-ranges = size *range
 size = uint16
 range = lower upper
 lower = uint64
 upper = uint64

 sequence-set = size *range
 size = uint16 ; length of variable portion in bytes

 range = lower upper ; inclusive
 lower = sequence-no
 upper = sequence-no

 vbin32 = size octets
 size = uint32
 octets = 0*4294967295 OCTET ; size OCTETs

 map = size count *entry

 size = uint32 ; size of count and entries in octets
 count = uint32 ; number of entries in the map

 entry = key type value
 key = str8
 type = OCTET ; type code of the value
 value = *OCTET ; the encoded value

 list = size count *item

 size = uint32 ; size of count and items in octets
 count = uint32 ; number of items in the list

 item = type value
 type = OCTET ; type code of the value
 value = *OCTET ; the encoded value

 array = size type count values

 size = uint32 ; size of type, count, and values in octets
 type = OCTET ; the type of the encoded values
 count = uint32 ; number of items in the array

 values = 0*4294967290 OCTET ; (size - 5) OCTETs

Protocol Grammar

277

 struct32 = size class-code struct-code packing-flags field-data

 size = uint32

 class-code = OCTET ; zero for top-level structs
 struct-code = OCTET ; together with class-code identifies the struct
 ; definition which determines the pack-width and
 ; fields

 packing-flags = 0*4 OCTET ; pack-width OCTETs

 field-data = *OCTET ; (size - 2 - pack-width) OCTETs

 bin40 = 5 OCTET

 dec32 = exponent mantissa
 exponent = uint8
 mantissa = int32

 bin64 = 9 OCTET

 dec64 = exponent mantissa
 exponent = uint8
 mantissa = int64

278

Appendix A. Conformance Tests
A.1. Introduction

The AMQP conformance tests are designed to verify how far an AMQP server actually conforms to the specifications
laid out in this document. In principle, every "guideline for implementers", or "RULE" in the protocol's XML
specification has a specific test that verifies whether the server conforms or not. In practice, some of the guidelines
are intended for clients, and some are not testable without excessive cost.

The protocol itself cross references test by a logical label from within the protocol XML description, but the Test Sets
will be documented elsewhere as developed and ratified by the AMQ Protocol governing body.

Note that tests do not test performance, stability, or scalability. The scope of the conformance tests is to measure how
far an AMQP server is compatible with the protocol specifications, not how well it is built.

279

Appendix B. Implementation Guide
It is the intent of the authors to include a full implementation guide in a future release of the specification. The material
included here will form the starting point for the implementation guide.

B.1. AMQP Client Architecture

It is possible to read and write AMQP frames directly from an application but this would be bad design. Even the
simplest AMQP dialogue is rather more complex than, say HTTP, and application developers should not need to
understand such things as binary framing formats in order to send a message to a message queue.

The recommended AMQP client architecture consists of several layers of abstraction:

1. A framing layer. This layer takes AMQP protocol commands or controls, in some language-specific format
(structures, classes, etc.) and serializes them as wire-level frames. The framing layer can be mechanically generated
from the AMQP specification (which is defined in a protocol modelling language, implemented in XML and
specifically designed for AMQP).

2. A connection manager layer. This layer reads and writes AMQP frames and manages the overall connection and
session logic. In this layer we can encapsulate the full logic of opening a connection and session, error handling,
content transmission and reception, and so on. Large parts of this layer can be produced automatically from the
AMQP specifications. For instance, the specifications define which commands carry content, so the logic "send
command and then optionally send content" can be produced mechanically.

3. An API layer. This layer exposes a specific API for applications to work with. The API layer may reflect some
existing standard, or may expose the high-level AMQP commands, making a mapping as described earlier in this
section. The AMQP commands are designed to make this mapping both simple and useful. The API layer may itself
be composed of several layers, e.g. a higher-level API constructed on top of the AMQP command API.

4. A transaction processing layer. This layer drives the application by delivering it transactions to process, where
the transactions are middleware messages. Using a transaction layer can be very powerful because the middleware
becomes entirely hidden, making applications easier to build, test, and maintain.

Additionally, there is usually some kind of I/O layer, which can be very simple (synchronous socket reads and writes)
or sophisticated (fully asynchronous multi-threaded i/o).

This diagram shows the overall recommended architecture (without layer 4, which is a different story):

 +------------------------+
 | Application |
 +-----------+------------+
 |
 +------------------------+
 +---| API Layer |----Client API Layer-----+
 | +-----------+------------+ |
 | | |
 | +------------------------+ +---------------+ |
 | | Connection Manager +----+ Framing Layer | |
 | +-----------+------------+ +---------------+ |
 | | |
 | +------------------------+ |
 +---| Asynchronous I/O Layer |-------------------------+
 +-----------+------------+
 |

 - - - - Network - - - -

Implementation Guide

280

In this document, when we speak of the "client API", we mean all the layers below the application (i/o, framing,
connection manager, and API layers. We will usually speak of "the client API" and "the application" as two separate
things, where the application uses the client API to talk to the middleware server.

	AMQP
	Table of Contents
	Credits
	1. Technical Contributors
	2. Reviewers

	Part I. Concepts
	1. Overview
	1.1. Goals of This Document
	1.2. Patents
	1.3. Summary
	1.3.1. What is AMQP?
	1.3.2. Why AMQP?
	1.3.3. Scope of AMQP
	1.3.4. The Advanced Message Queuing Protocol
	1.3.4.1. The AMQP Model
	1.3.4.2. The AMQP Protocol

	1.3.5. Functional Scope

	1.4. Organization of This Document
	1.5. Conventions
	1.5.1. Definitions
	1.5.2. Version Numbering
	1.5.3. Technical Terminology

	2. The AMQP Model
	2.1. Introduction to The AMQP Model
	2.1.1. The Message Queue
	2.1.2. The Exchange
	2.1.3. The Routing Key
	2.1.4. Analogy to Email
	2.1.5. Message Flow
	2.1.5.1. Message Life-cycle
	2.1.5.2. What The Producer Sees
	2.1.5.3. What The Consumer Sees
	2.1.5.4. Default Flow

	2.2. Virtual Hosts
	2.3. Exchanges
	2.3.1. Types of Exchange
	2.3.1.1. The Direct Exchange Type
	2.3.1.2. The Fanout Exchange Type
	2.3.1.3. The Topic Exchange Type
	2.3.1.4. The Headers Exchange Type
	2.3.1.5. The System Exchange Type
	2.3.1.6. Implementation-defined Exchange Types

	2.3.2. Exchange Life-cycle

	2.4. Message Queues
	2.4.1. Message Queue Properties
	2.4.2. Queue Life-cycles

	2.5. Bindings
	2.5.1. Constructing a Shared Queue
	2.5.2. Constructing a Reply Queue
	2.5.3. Constructing a Pub-Sub Subscription Queue

	2.6. Messages
	2.6.1. Flow Control
	2.6.2. Transfer of Responsibility

	2.7. Subscriptions
	2.8. Transactions
	2.9. Distributed Transactions
	2.9.1. Distributed Transaction Scenario

	3. Sessions
	3.1. Session Definition
	3.1.1. Session Lifetime
	3.1.2. A Transport For Commands
	3.1.3. Session as a Layer

	3.2. Session Functionality
	3.2.1. Sequential Identification
	3.2.2. Confirmation
	3.2.3. Completion
	3.2.4. Replay and Recovery

	3.3. Transport requirements
	3.4. Commands and Controls
	3.4.1. Commands
	3.4.1.1. The sync bit
	3.4.1.2. Results
	3.4.1.3. Exceptions

	3.4.2. Controls

	3.5. Session Lifecycle
	3.5.1. Attachment
	3.5.2. Session layer state
	3.5.3. Reliability
	3.5.4. Replay

	3.6. Using Session Controls
	3.6.1. Attaching to a "new" session
	3.6.2. Attempting to re-attach to an existing session
	3.6.3. Detaching cleanly
	3.6.4. Closing

	Part II. Specification
	4. Transport
	4.1. IANA Port Number
	4.2. Protocol Header
	4.3. Version Negotiation
	4.4. Framing
	4.4.1. Assemblies, Segments, and Frames
	4.4.2. Channels and Tracks
	4.4.3. Frame Format

	4.5. SCTP

	5. Formal Notation
	5.1. Docs and Rules
	5.2. Types
	5.3. Structs
	5.4. Domains
	5.4.1. Enums

	5.5. Constants
	5.6. Classes
	5.6.1. Roles

	5.7. Controls
	5.7.1. Responses

	5.8. Commands
	5.8.1. Results
	5.8.2. Exceptions

	5.9. Segments
	5.9.1. Header Segment
	5.9.2. Body Segment

	6. Constants
	7. Types
	Fixed width types
	Type: bin8
	Type: int8
	Type: uint8
	Type: char
	Type: boolean
	Type: bin16
	Type: int16
	Type: uint16
	Type: bin32
	Type: int32
	Type: uint32
	Type: float
	Type: char-utf32
	Type: sequence-no
	Type: bin64
	Type: int64
	Type: uint64
	Type: double
	Type: datetime
	Type: bin128
	Type: uuid
	Type: bin256
	Type: bin512
	Type: bin1024
	Type: bin40
	Type: dec32
	Type: bin72
	Type: dec64
	Type: void
	Type: bit

	Variable width types
	Type: vbin8
	Type: str8-latin
	Type: str8
	Type: str8-utf16
	Type: vbin16
	Type: str16-latin
	Type: str16
	Type: str16-utf16
	Type: byte-ranges
	Type: sequence-set
	Type: vbin32
	Type: map
	Type: list
	Type: array
	Type: struct32

	Mandatory Types

	8. Domains
	Domain: segment-type
	Domain: track
	Domain: str16-array

	9. Control Classes
	Class: connection
	Domain: connection.close-code
	Domain: connection.amqp-host-url
	Domain: connection.amqp-host-array
	Control: connection.start
	Arguments
	Rules
	Rule: protocol-name
	Rule: client-support
	Rule: required-fields
	Rule: required-support

	Control: connection.start-ok
	Arguments
	Rules
	Rule: required-fields
	Rule: security
	Rule: validity

	Control: connection.secure
	Arguments

	Control: connection.secure-ok
	Arguments

	Control: connection.tune
	Arguments
	Rules
	Rule: minimum
	Rule: permitted-range
	Rule: no-heartbeat-min

	Control: connection.tune-ok
	Arguments
	Rules
	Rule: upper-limit
	Rule: available-channels
	Rule: minimum
	Rule: upper-limit
	Rule: max-frame-size
	Rule: permitted-range
	Rule: no-heartbeat-min

	Control: connection.open
	Arguments
	Rules
	Rule: separation
	Rule: security
	Rule: behavior

	Control: connection.open-ok
	Arguments

	Control: connection.redirect
	Arguments
	Rules
	Rule: usage

	Control: connection.heartbeat
	Control: connection.close
	Arguments

	Control: connection.close-ok
	Rules
	Rule: reporting

	Class: session
	Rules
	Rule: attachment

	Domain: session.header
	Struct Type
	Fields

	Domain: session.command-fragment
	Struct Type
	Fields

	Domain: session.name
	Domain: session.detach-code
	Domain: session.commands
	Domain: session.command-fragments
	Control: session.attach
	Arguments
	Rules
	Rule: one-transport-per-session
	Rule: one-session-per-transport
	Rule: idempotence
	Rule: scoping

	Control: session.attached
	Arguments

	Control: session.detach
	Arguments

	Control: session.detached
	Arguments

	Control: session.request-timeout
	Arguments
	Rules
	Rule: maximum-granted-timeout

	Control: session.timeout
	Arguments

	Control: session.command-point
	Arguments
	Rules
	Rule: newly-attached-transports
	Rule: zero-offset
	Rule: nonzero-offset

	Control: session.expected
	Arguments
	Rules
	Rule: include-next-command
	Rule: commands-empty-means-new-session
	Rule: no-overlaps
	Rule: minimal-fragments

	Control: session.confirmed
	Arguments
	Rules
	Rule: durability
	Rule: no-overlaps
	Rule: minimal-fragments
	Rule: exclude-known-complete

	Control: session.completed
	Arguments
	Rules
	Rule: known-completed-reply
	Rule: delayed-reply
	Rule: merged-reply
	Rule: completed-implies-confirmed
	Rule: exclude-known-complete

	Control: session.known-completed
	Arguments
	Rules
	Rule: stateless
	Rule: known-completed-implies-known-confirmed

	Control: session.flush
	Arguments

	Control: session.gap
	Arguments
	Rules
	Rule: gap-confirmation-and-completion
	Rule: aborted-commands
	Rule: completed-or-confirmed-commands

	10. Command Classes
	Class: execution
	Domain: execution.error-code
	Command: execution.sync
	Command: execution.result
	Arguments

	Command: execution.exception
	Arguments

	Class: message
	Rules
	Rule: persistent-message
	Rule: no-persistent-message-discard
	Rule: throttling
	Rule: non-persistent-message-overflow
	Rule: non-persistent-message-discard
	Rule: min-priority-levels
	Rule: priority-level-implementation
	Rule: priority-delivery

	Domain: message.delivery-properties
	Struct Type
	Fields
	Rules
	Rule: implementation
	Rule: hinting
	Rule: ttl-decrement

	Domain: message.fragment-properties
	Struct Type
	Fields

	Domain: message.reply-to
	Struct Type
	Fields

	Domain: message.message-properties
	Struct Type
	Fields
	Rules
	Rule: unique
	Rule: immutable
	Rule: authentication

	Domain: message.destination
	Domain: message.accept-mode
	Domain: message.acquire-mode
	Domain: message.reject-code
	Domain: message.resume-id
	Domain: message.delivery-mode
	Domain: message.delivery-priority
	Domain: message.flow-mode
	Domain: message.credit-unit
	Command: message.transfer
	Arguments
	Segments
	header
	body

	Rules
	Rule: transactional-publish
	Rule: blank-destination

	Exceptions
	Exception: nonexistent-exchange

	Command: message.accept
	Arguments
	Rules
	Rule: acquisition

	Command: message.reject
	Arguments
	Rules
	Rule: alternate-exchange
	Rule: acquisition

	Command: message.release
	Arguments
	Rules
	Rule: ordering

	Command: message.acquire
	Arguments
	Rules
	Rule: one-to-one

	Result
	Struct Type
	Fields

	Command: message.resume
	Arguments
	Rules
	Rule: unknown-resume-id

	Exceptions
	Exception: destination-not-found

	Result
	Struct Type
	Fields

	Command: message.subscribe
	Arguments
	Rules
	Rule: simultaneous-subscriptions
	Rule: default-flow-mode
	Rule: initial-credit

	Exceptions
	Exception: queue-deletion
	Exception: queue-not-found
	Exception: unique-subscriber-destination
	Exception: in-use

	Command: message.cancel
	Arguments
	Rules
	Rule: post-cancel-transfer-resolution

	Exceptions
	Exception: subscription-not-found

	Command: message.set-flow-mode
	Arguments
	Rules
	Rule: byte-accounting
	Rule: mode-switching
	Rule: default-flow-mode

	Command: message.flow
	Arguments

	Command: message.flush
	Arguments

	Command: message.stop
	Arguments

	Class: tx
	Rules
	Rule: duplicate-tracking

	Command: tx.select
	Exceptions
	Exception: exactly-once
	Exception: no-dtx
	Exception: explicit-accepts

	Command: tx.commit
	Exceptions
	Exception: select-required

	Command: tx.rollback
	Exceptions
	Exception: select-required

	Class: dtx
	Rules
	Rule: transactionality

	Domain: dtx.xa-result
	Struct Type
	Fields

	Domain: dtx.xid
	Struct Type
	Fields

	Domain: dtx.xa-status
	Command: dtx.select
	Command: dtx.start
	Arguments
	Exceptions
	Exception: illegal-state
	Exception: already-known
	Exception: join-and-resume
	Exception: unknown-xid
	Exception: unsupported

	Result

	Command: dtx.end
	Arguments
	Rules
	Rule: success
	Rule: session-closed
	Rule: failure
	Rule: resume

	Exceptions
	Exception: illegal-state
	Exception: suspend-and-fail
	Exception: not-associated

	Result

	Command: dtx.commit
	Arguments
	Exceptions
	Exception: illegal-state
	Exception: unknown-xid
	Exception: not-disassociated
	Exception: one-phase
	Exception: two-phase

	Result

	Command: dtx.forget
	Arguments
	Exceptions
	Exception: illegal-state
	Exception: unknown-xid
	Exception: not-disassociated

	Command: dtx.get-timeout
	Arguments
	Exceptions
	Exception: unknown-xid

	Result
	Struct Type
	Fields

	Command: dtx.prepare
	Arguments
	Rules
	Rule: obligation-1
	Rule: obligation-2

	Exceptions
	Exception: illegal-state
	Exception: unknown-xid
	Exception: not-disassociated

	Result

	Command: dtx.recover
	Result
	Struct Type
	Fields

	Command: dtx.rollback
	Arguments
	Exceptions
	Exception: illegal-state
	Exception: unknown-xid
	Exception: not-disassociated

	Result

	Command: dtx.set-timeout
	Arguments
	Rules
	Rule: effective
	Rule: reset

	Exceptions
	Exception: unknown-xid

	Class: exchange
	Rules
	Rule: required-types
	Rule: recommended-types
	Rule: required-instances
	Rule: default-exchange
	Rule: default-access
	Rule: extensions

	Domain: exchange.name
	Command: exchange.declare
	Arguments
	Rules
	Rule: minimum
	Rule: empty-name
	Rule: double-failure
	Rule: support
	Rule: sticky
	Rule: sticky

	Exceptions
	Exception: reserved-names
	Exception: exchange-name-required
	Exception: typed
	Exception: exchange-type-not-found
	Exception: pre-existing-exchange
	Exception: not-found
	Exception: unknown-argument

	Command: exchange.delete
	Arguments
	Exceptions
	Exception: exists
	Exception: exchange-name-required
	Exception: used-as-alternate
	Exception: exchange-in-use

	Command: exchange.query
	Arguments
	Result
	Struct Type
	Fields

	Command: exchange.bind
	Arguments
	Rules
	Rule: duplicates
	Rule: durable-exchange
	Rule: binding-count
	Rule: multiple-bindings

	Exceptions
	Exception: empty-queue
	Exception: queue-existence
	Exception: exchange-existence
	Exception: exchange-name-required
	Exception: unknown-argument

	Command: exchange.unbind
	Arguments
	Exceptions
	Exception: non-existent-queue
	Exception: non-existent-exchange
	Exception: exchange-name-required
	Exception: non-existent-binding-key

	Command: exchange.bound
	Arguments
	Result
	Struct Type
	Fields

	Class: queue
	Rules
	Rule: any-content

	Domain: queue.name
	Command: queue.declare
	Arguments
	Rules
	Rule: default-binding
	Rule: minimum-queues
	Rule: persistence
	Rule: types
	Rule: pre-existence
	Rule: types
	Rule: pre-existence

	Exceptions
	Exception: reserved-prefix
	Exception: pre-existing-exchange
	Exception: unknown-exchange
	Exception: passive
	Exception: in-use
	Exception: unknown-argument

	Command: queue.delete
	Arguments
	Exceptions
	Exception: empty-name
	Exception: queue-exists
	Exception: if-unused-flag
	Exception: not-empty

	Command: queue.purge
	Arguments
	Rules
	Rule: empty
	Rule: pending-messages
	Rule: purge-recovery

	Exceptions
	Exception: empty-name
	Exception: queue-exists

	Command: queue.query
	Arguments
	Result
	Struct Type
	Fields

	Class: file
	Rules
	Rule: reliable-storage
	Rule: no-discard
	Rule: priority-levels
	Rule: acknowledgement-support

	Domain: file.file-properties
	Struct Type
	Fields

	Domain: file.return-code
	Command: file.qos
	Arguments
	Rules
	Rule: prefetch-discretion

	Command: file.qos-ok
	Command: file.consume
	Arguments
	Rules
	Rule: min-consumers

	Exceptions
	Exception: queue-exists-if-empty
	Exception: not-existing-consumer
	Exception: not-empty-consumer-tag
	Exception: in-use

	Command: file.consume-ok
	Arguments

	Command: file.cancel
	Arguments

	Command: file.open
	Arguments
	Rules
	Rule: content-size

	Command: file.open-ok
	Arguments
	Rules
	Rule: behavior
	Rule: staging

	Command: file.stage
	Segments
	header
	body

	Command: file.publish
	Arguments
	Rules
	Rule: default
	Rule: implementation
	Rule: implementation

	Exceptions
	Exception: refusal

	Command: file.return
	Arguments
	Segments
	header
	body

	Command: file.deliver
	Arguments
	Rules
	Rule: redelivery-tracking
	Rule: non-zero

	Command: file.ack
	Arguments
	Rules
	Rule: session-local
	Rule: validation

	Command: file.reject
	Arguments
	Rules
	Rule: server-interpretation
	Rule: not-selection
	Rule: session-local
	Rule: requeue-strategy

	Class: stream
	Rules
	Rule: overflow-discard
	Rule: priority-levels
	Rule: acknowledgement-support

	Domain: stream.stream-properties
	Struct Type
	Fields

	Domain: stream.return-code
	Command: stream.qos
	Arguments
	Rules
	Rule: ignore-prefetch
	Rule: drop-by-priority

	Command: stream.qos-ok
	Command: stream.consume
	Arguments
	Rules
	Rule: min-consumers
	Rule: priority-based-delivery

	Exceptions
	Exception: queue-exists-if-empty
	Exception: not-existing-consumer
	Exception: not-empty-consumer-tag
	Exception: in-use

	Command: stream.consume-ok
	Arguments

	Command: stream.cancel
	Arguments

	Command: stream.publish
	Arguments
	Segments
	header
	body

	Rules
	Rule: default
	Rule: implementation
	Rule: implementation

	Exceptions
	Exception: refusal

	Command: stream.return
	Arguments
	Segments
	header
	body

	Command: stream.deliver
	Arguments
	Segments
	header
	body

	Rules
	Rule: session-local

	11. The Model
	11.1. Exchanges
	11.1.1. Mandatory Exchange Types
	11.1.1.1. Direct Exchanges
	Rule: exchange_type_direct
	Rule: exchange_type_direct_binding
	Rule: default_exchange
	Rule: amq_direct_exchange

	11.1.1.2. Fanout Exchanges
	Rule: exchange_type_fanout
	Rule: exchange_type_fanout_binding
	Rule: amq_fanout_exchange

	11.1.2. Optional Exchange Types
	11.1.2.1. Headers Exchanges
	Rule: exchange_type_headers
	Rule: headers_exchange_requires_match_arg
	Rule: headers_exchange_requires_match_all
	Rule: headers_exchange_requires_match_any
	Rule: amq_match_exchange

	11.1.2.2. Topic Exchanges
	Rule: exchange_type_topic
	Rule: exchange_type_topic_binding
	Rule: amq_topic_exchange

	11.1.2.3. Failover Exchanges
	Rule: exchange_type_failover
	Rule: amq_failover_exchange
	Rule: only_one_failover_exchange
	Rule: failover_exchange_allow_private_queues
	Rule: failover_exchange_disallow_shared_queues
	Rule: failover_exchange_behavior
	Rule: failover_exchange_messages
	Rule: failover_exchange_message_url_ordering
	Rule: failover_exchange_message_differences
	Rule: failover_exchange_spontaneous_disconnect
	Rule: failover_exchange_usage

	11.1.3. System Exchanges
	Rule: exchange_type_system
	Rule: system_exchange_behavior
	Rule: system_exchange_binding_forbidden

	11.1.4. Implementation-defined Exchange Types
	Rule: exchange_type_naming

	11.1.5. Exchange Naming
	Rule: exchange_naming

	11.2. Queues
	Rule: queue_naming

	12. Protocol Grammar
	12.1. Augmented BNF Rules
	12.2. Grammar

	Appendix A. Conformance Tests
	A.1. Introduction

	Appendix B. Implementation Guide
	B.1. AMQP Client Architecture

