AMQP

A General-Purpose Middleware Standard

AMQP: A General-Purpose Middleware Standard

Copyright Notice

© Copyright Cisco Systems, Credit Suisse, Deutsche Borse Systems, Envoy Technologies, Inc.,Goldman Sachs, IONA Technologies PLC, iMatix
Corporation sprl.,JPMorgan Chase Bank Inc. N.A, Novell, Rabbit Technologies Ltd., Red Hat, Inc., TWIST Process Innovations Itd, and 29West
Inc. 2006. All rights reserved.

License

Cisco Systems, Credit Suisse, Deutsche Borse Systems, Envoy Technologies, Inc.,Goldman Sachs, IONA Technologies PLC, iMatix Corporation
sprl.,JPMorgan Chase Bank Inc. N.A, Novell, Rabbit Technologies Ltd., Red Hat, Inc., TWIST Process Innovations Itd, and 29West Inc.
(collectively, the "Authors") each hereby grants to you a worldwide, perpetual, royalty-free, nontransferable, nonexclusive license to (i) copy,
display, distribute and implement the Advanced Messaging Queue Protocol ("AMQP") Specification and (ii) the Licensed Claims that are held by
the Authors, all for the purpose of implementing the Advanced Messaging Queue Protocol Specification. Your license and any rights under this
Agreement will terminate immediately without notice from any Author if you bring any claim, suit, demand, or action related to the Advanced
Messaging Queue Protocol Specification against any Author. Upon termination, you shall destroy all copies of the Advanced Messaging Queue
Protocol Specification in your possession or control.

As used hereunder, "Licensed Claims' means those claims of a patent or patent application, throughout the world, excluding design patents and
design registrations, owned or controlled, or that can be sublicensed without fee and in compliance with the requirements of this Agreement, by an
Author or its affiliates now or at any future time and which would necessarily be infringed by implementation of the Advanced Messaging Queue
Protocol Specification. A claim is necessarily infringed hereunder only when it is not possible to avoid infringing it because there is no plausible
non-infringing alternative for implementing the required portions of the Advanced Messaging Queue Protocol Specification. Notwithstanding the
foregoing, Licensed Claims shall not include any claims other than as set forth above even if contained in the same patent as Licensed Claims;
or that read solely on any implementations of any portion of the Advanced Messaging Queue Protocol Specification that are not required by the
Advanced Messaging Queue Protocol Specification, or that, if licensed, would require a payment of royalties by the licensor to unaffiliated third
parties. Moreover, Licensed Claims shall not include (i) any enabling technologies that may be necessary to make or use any Licensed Product but
are not themselves expressly set forth in the Advanced Messaging Queue Protocol Specification (e.g., semiconductor manufacturing technology,
compiler technology, object oriented technology, networking technology, operating system technology, and the like); or (ii) the implementation
of other published standards developed elsewhere and merely referred to in the body of the Advanced Messaging Queue Protocol Specification,
or (iii) any Licensed Product and any combinations thereof the purpose or function of which is not required for compliance with the Advanced
Messaging Queue Protocol Specification. For purposes of this definition, the Advanced Messaging Queue Protocol Specification shall be deemed
to include both architectural and interconnection requirements essential for interoperability and may also include supporting source code artifacts
where such architectural, interconnection requirements and source code artifacts are expressly identified as being required or documentation to
achieve compliance with the Advanced Messaging Queue Protocol Specification.

Asused hereunder, "Licensed Products’ means only those specific portions of products (hardware, software or combinationsthereof) that implement
and are compliant with all relevant portions of the Advanced Messaging Queue Protocol Specification.

The following disclaimers, which you hereby also acknowledge as to any use you may make of the Advanced Messaging Queue Protocol
Specification:

THE ADVANCED MESSAGING QUEUE PROTOCOL SPECIFICATION IS PROVIDED "AS IS AND THE AUTHORS MAKE
NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NON-INFRINGEMENT, OR TITLE; THAT THE CONTENTS OF
THE ADVANCED MESSAGING QUEUE PROTOCOL SPECIFICATION ARE SUITABLE FOR ANY PURPOSE; NOR THAT THE
IMPLEMENTATION OF THE ADVANCED MESSAGING QUEUE PROTOCOL SPECIFICATION WILL NOT INFRINGE ANY THIRD
PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS.

THE AUTHORS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES
ARISING OUT OF OR RELATING TO ANY USE, IMPLEMENTATION OR DISTRIBUTION OF THE ADVANCED MESSAGING QUEUE
PROTOCOL SPECIFICATION.

The name and trademarks of the Authors may NOT be used in any manner, including advertising or publicity pertaining to the Advanced Messaging
Queue Protocol Specification or its contentswithout specific, written prior permission. Titleto copyright inthe Advanced M essaging Queue Protocol
Specification will at all times remain with the Authors.

No other rights are granted by implication, estoppel or otherwise.

Upon termination of your license or rights under this Agreement, you shall destroy all copies of the Advanced Messaging Queue Protocol
Specification in your possession or control.

Status of this Document

"JPMorgan”, "JPMorgan Chase", "Chase", the JPMorgan Chase logo and the Octagon Symbol are trademarks of JPMorgan Chase & Co.

IMATIX and the iMatix logo are trademarks of iMatix Corporation sprl.

IONA, IONA Technologies, and the IONA logos are trademarks of IONA Technologies PLC and/or its subsidiaries.

LINUX isatrademark of Linus Torvalds.

RED HAT and JBOSS are registered trademarks of Red Hat, Inc. in the US and other countries.

Java, all Java-based trademarks and OpenOffice.org are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.
RabbitMQ™ is a Trademark of Rabbit Technologies Ltd.

Other company, product, or service names may be trademarks or service marks of others.

Table of Contents

L0 1= o 1 £SO PSP UPPPPTRUPPPN Xi
1. TeChniCal CONLIDULOISiiieie ettt ettt e et e et eeena s Xi
2 REVIBIEIS ..ottt eaaas Xi

[O3 Torc o SO PRTUPPIN 1
Lo OVEIVIBIW oottt ettt ettt ettt e et e e enan s 4

1.1. GOals Of ThiS DOCUMENTcoutiieiiii ettt ettt e e et e e ettt e ettt e e e e et e e e e rb e e eeneaeeeen 4
L2, PAEENES ..ottt 4
1.3, SUMIMBIY ..ttt ettt e et n et et et et e e e e e e e e e e e ens 4
130 WhHat 1S AMOQP? L.ttt e 4
1.3.2. WHY AMOP? <.ttt et 4
1.3.3. SCOPE OF AMQIP . ettt e 4
1.3.4. The Advanced Message QUeUING ProtoCOIviiieiiiiiiiiiieiiii e 5
1.3.5. FUNCEIONAL SCOPE ...eevtneeieii ettt ettt e ettt e e e et e e e e ena e eeens 7

1.4. Organization Of ThiS DOCUMENTccuuuiiiiii ittt ettt e e e e e enaan s 7
L5, CONVENTIONS ...ttt ettt ettt e ettt e e ettt e ettt e e et et r e et et e e e e baa s 7
15,0, DEFINITIONS ..ottt et ettt e e e 7
1.5.2. Version NUMDEINGieeiiieeiii ettt et e e et e e e et e e eaae e eeens 8
1.5.3. TechniCal TEMUNOIOGYeeeeruneieeiiee et ettt ettt e e e e e e e e e eenans 8

2. The AMQP MOGE ...ttt e ettt e ettt e e e e et e e e eera e aeees 11
2.1. Introduction to The AMQP MOGEoiinii e 11
2.1.1. THE MESSAJE QUELIE ... ittt ettt ettt ettt e et e ettt e e e et eeenaa s 11
2.1.2. TRE EXCREINGE ... ettt e ettt e e e e e e e ebb e eeees 12
2.1.3. The ROULING K@Y ...t 12
214, AnAlogy T0 EMAIl ..o 12
215, MESSAGE FIOW ...oviiiiiei et 13

2.2, VIFTUBL HOSES ...ttt ettt e e e e e ene s 15
2.3 EXCRANGES ...ttt et 15
2.3.1. TYPES Of EXCRANGE ...ceeviieieii ettt ettt e s 16
2.3.2. EXChange Life-CYCIeoouiiiieii e 18

2.4, MESSAOR QUEUEScvunieieiit ettt ettt e et et e e e et et et et 18
2.4.1. Message QUEUE ProPEITIESiieiei ettt ettt e e e e 19
2.4.2. QUEUE LITE-CYCIES ..oeii ettt 19

2.5, BINOINGS ... eeet ettt et 19
2.5.1. Constructing & Shared QUEUEcoouuiiiiiiiie e 20
2.5.2. Constructing a RePlY QUELEciiiiiiiiiiii e 20
2.5.3. Constructing a Pub-Sub SUbSCription QUEUEccevuuiieiiiiiieieiii e e e 21

2.8, MIBSSBIESiitie ittt 22
2.6.1. FIOW CONEIOL ...ttt ettt e e e e e ena e e eaans 22
2.6.2. Transfer of RESPONSIDITITYooeiiiii e 22

2.7, SUDSCIILIONS ... eeete ettt ettt ettt ettt ettt e ettt e ettt e et et e e e et e e e b 22
2.8, THTANSACHIONS ... ettt ettt ettt e et e ettt et et e et e b e e e e e e s 22
2.9. Distributed TranSBCLIONSccuuueieiii ettt ettt ettt e et e e et eeeea s 23
2.9.1. Distributed TransaCtion SCENAMOcccuuuieeiiiieeeiii ettt 24

S <SS 0] PRSP PP SUPPTT 25
3.1, SESSION DEFINITION «.eeviieeit ettt 25
3. 1.1 SESSION LIfEIIME it 25
3.1.2. A Transport FOr COMMENGSccuuunniiiiineeeeii ettt et e e e e e 25

3. 1.3, SESSION S @ LAYEN ..uiiiiiiiii e 25

3.2, SESSION FUNCHONAIITY ...ceieiiieeeii et e e e e 26
3.2.1. Sequential [dentifiCationccuuuieiiiuiiee e 26
3.2.2. CONFIMMELION ...ttt ettt ettt e et e e e 26

G720 T @1 =1 o o P 26
3.2.4. RePlay ant RECOVENYuuiiiiiiiiiieiie et e e e e e e e e e e e aanas 27

3.3, TranSPOrt FEOUITEMENLSuueieteiiteeeieeeteeet e e et e et eset e e ea e e st e eaa e ean e estneeeanaestneeaneeenss 27
3.4. Commands and CONLIOIScouuiiiieii e e e e e e e e e e et e e et e e e eannaees 27
Gt B 03 1 7= 0 27
3B @0 11 (0] = 28

S s = T g T) (=Y = T 28
351 AtAChMENt ..o 29
3.5.2. SESSION [AYEr SALE ...evviiiiii e 29
B.5.3. READIITY .oeiiiii e 29
TSI = o) PP 29

3.6. USING SESSION CONLIOIS . ..uuiiiiiiiiie et e et e e e e e e e e e e e e e e e et e e et e e st e e st e e e an e eeneeeens 30
3.6.1. Attaching t0 @ "NEW" SESSION ...cuuuiiiiieiiieeei e ee e et e e e e e e et e et e et e e e e esanaes 30
3.6.2. Attempting to re-attach to an exiSting SESSIONuevviieiii e e e e een 31
3.6.3. Detaching ClEANIYcovvniiii e e 32
G330 0T 1 o 33

TS o= ot o= 1o 34
O I = 1S oo] 1 A PP 40
A1 TANA POt NUMDBEE ... et e e e e et e e e 40
o (oo Il o 1= L= 40
F VA= £ [0 I\ Lo To 1 i) o [P 40
10 11 o 41
4.4.1. Assemblies, Segments, and FIrameESccuuiiiiiiiiiii e e e 41
4.4.2, Channels aNd TraCKSuuiiiii it e e e e e e e e e anas 42
443, Frame FOMMaLo e 43

TS O I P 44
LI 0T 0 o = o) o 45
LI I B 1o ot3= o o (U = 45
L 1Y o< T PP 46
LG TS 1 o £ PRI 47
L3 I To 3= 50
LG I 11 P 51

DD, CONSIANES ..ttt ittt 51
LI O - - 52
B.B. 1. ROIES ...ttt 52

LI A O 5 11 (o] = 53
L T (= o0 = PPN 54

L3R O] 1110 47 0 L 54
I L=~ £ PP PPT 55
ST (o= o 1 o P 55

D0 BN IS .t ittt 56
5.9.1. HEBOEr SEOMEN . .uuuiiii e e e e e e e e e e e e e et e e e aeas 56
e A 2 T To | ST 11 o | PN 57

LT 0] 01 = | PP 58
2 Y/ 1= PP TPRPREN 59
A8 D= T (1 g TN Y 0= 59
5 0 O o 11 1 PP 59

5 2 1 ¢ P 60
45 e T 11 PP 61
50 v o PP 62
7.1.5. BOOIEAN ...ecee e 63
45 LG T o 11 T PP 64
5 A 1o 1 T PP 65
45 S 11 RSP 66

Vi

28 e TR 1 4 C v TP 67
2% T (O T 1 5 72 PP 68
25 T T VT 1 2 TR 69
2% T 7 o - TN 70
8 T B R o= 11 ¥ PSP 71
0 N =0 (1= oo = o [TN 72
25 T T o 17 SR 73
2% T S T 1 P 74
25 T A V1 {7 ST 75
T.0A8. dOUDIE oeeeiie e 76
A8 T L o = < (21T PP 77
28 T O T o1 e S PP 78
2% T T V¥ o TP 79

A T o123 TP 80

8 TS T o151 P PTP 8l

28 2 o1 0 2 PR 82
T.0.25. DINAD .ooveiiiiee e 83

A I T o (< o PR 84
2 T A o1 47 TR 85

A I T o (< o7 ST 86
28 S T o o TP 87
25 G O T o PP 88

7.2. Variable Witth TYPES ...ovuiii e 90
A Y o 1 < PP 90
A (< T F 1] PPN 91
A T 1 < TN 92
A = (T 1 PP 93
A T o1 X TR 94
A T (g (ST - o PR 95
A = o 1 T PRSP 96
A S T (g (ST L TP 97
e B o) (= = o (= 98
T.2.00. SBOUEINCE-SBL .uiuuittit ittt e e e aa 99
28 N TV 1 K ¥ PP 100
5 7 11| o N 101
28 1 T 1= PP 102
2.0, AITAY e 103

A LT (0 To: 2 PP 104

AR Y= g To = o YA 1Y/ o= T 106
I L0 4= TP 107
e IS =000 01 < 107
A 1 - v PSR 107
e TR TS 1 G = Y PPN 108
e 0011 {0 IO F= LS PP 110
Lo I o0 0101 ox o o PRSP 110
9.1.1. CONNECLION.ClOSE-COUR ...vviiitiiiiiiie e e e 111
9.1.2. conNection.amgp-hoSt-Urloiiiiii e 112
9.1.3. CONNECtiON.aMOP-NOSE-AITAY uiiiiiieiii e e e e e e 113
.14, CONNECHION.SEAIT ..utiitiiiiii et e it ee e et e e et e e e et e et e et e et e st e e e aeeaeeaeens 114
9.1.5. CONNECHION.SEAN-0Kiveiiieitiei et e e e et e et e e e et e et e e b e aaeeanes 116
9.1.6. CONNECLION.SECUIE ...vuiiveiiteeiteit ettt et e et e et ettt et e e e e et e et e et e st e et sanesaneeaneeaeees 117
9.1.7. CONNECHION.SECUIE 0K .\\ivtieeteteiiteeteete et eet et e e e e e et e e et e et et ee s e et e et e ereeraeenns 118
0.1.8. CONNECLIONLUNE .oviiieiii ittt et e e e e e e e e e eaaeens 119
9.1.9. CONNECHIONEUNETOK ...iiveiiieitiei e e e e et e e e et e et e aaeeanas 120

Vii

1S 50 50 0 T o0 o o e o= o T 122
9.1.11. CONNECLION.OPEN-0K 1.vuiiiiiiei et e e e e e e e e aan s 123
9.1.12. CONNECHION.FEAITECE ...uu et e e e e e e s 124
9.1.13. CONNECLION.NEAMDEAEeevenieieii e e 125
L0 I o019 1< o 1 g e o L= = R PP 126
9.1.15. CONNECHION.CIOSE-0K ...iiitiieeiiis et e et e e et e e et e e e era s 127
S =S o] o PP 129
L2 I L1 =< PP 130
0.2.2. SESSION.NEAEN ...t 130
9.2.3. $esSI0N.COMMANG-fragMENTiiii i e e e e e e e e e e 131
9.2.4, SESSIONNAIME ...iiieiitneeeitt e e eettreeeeat e e e et e e eett e e eettaeeeettnaeeaett e eeeeatnaeeeertnaaaaes 132
9.2.5. SESSION.AEtACh-COUEvviiiiiiii i 133
9.2.6. SESSION.COMMEANAS .eevuneieiii et e et ettt e et e e e et e e e et e e e et e e e et e e e e ennnaas 134
9.2.7. $esSI0N.COMMANG-fragMENES ...ovuiiiiiiiii e e e e e e e e e e e e eanes 135
9.2.8. SESIION.AEACN ooiiiit e e 136
9.2.9. SESIION.ALACNEHiiiiii i 137
9.2.10. SESSIONAEIACKH ...vuiiiiiii e 138
9.2.11. SESSIONAEIACNEAuuiiiiiiii i 139
9.2.12. SESSION.FEQUESE-TIMEOUL ...uiiiieiiieii e e e e e e e e e e e e e et e et e e et e e et e e et e eanaees 140
9.2.13. SESSIONLIMEOUL .eeviieiiiii e et e et e et e ettt e e et e e et e e e et e e e et e e e ene s 141
9.2.14. SesSIoN.COMMANG-POINT ...iiuuiiiii et et e e e e e e e e e e e e e e et r e e et e e eneeeens 142
9.2.15. SESSION.EXPECIEA ...uiiiiiii et e e e et e e e e e a 143
9.2.16. SESSION.CONFITMEA ... iiiiit it e et e e e et e e e eat e e e ertaneeeenes 144
9.2.17. SESSION.COMPIELEH ...iviiiiii e e e e e e s 145
9.2.18. sesSion.KNOWN-COMPIELEAoiiiiiiiii i e e e e e 146
9.2.19. SESSION.FIUSN it 147
I LU = o] e - o 148
O o 4100 o O == PR 150
FO. L. EXECULION eeutieeeiii ettt ettt e ettt e et e et et s e e e et s e et et e e e e st e e e e e nn e e e ann e e eaean 150
10.1.1. EXECULION.EITOM-COUE ..vuniiiiieneeeeiii e ettt e ettt e ettt e e et e e et e e e et e e e e eaeaeeeeenns 150
O 0 B = = B 1o g Y oS 151
10.1.3. EXECULION.FESUIT o.vuiieeeii ettt et e ettt e e e et e e e e et e e e eetaaeeeee 152
00 (o0 L o g = (= o1 o 153
T 11012 o = PSPPSR 155
02 T 1 =~ PRSPPI 157
10.2.2. Message.deliVEry-ProPartiEScc.uiiiiiieiii e e e e e 158
10.2.3. Message.fragment-proPertiESiieriiiii e e e e e 160
10.2.4. MESSAGE.TEPIY-TO 1ovniiiiieii et 161
10.2.5. MeSSage.MESSAPE-PIrOPEITIES ..vuuiiiteiiieiiii e e e e e e e e e e e e e e e et e e e eanaas 162
10.2.6. MESSAQE.AESHINALION ...uuiiiiiii e e e e e 164
10.2.7. MESSAQE.ACCEPE-MOUE .. cevuiiiiiiii e e e e e e e e et e e e e e e eaaees 165
10.2.8. MESSAGE.ACUITE-MOEvuuiiii i e e e e e e e e e e e e e aaaas 166
10.2.9. MESSAGE.IE ECE-COUR ...ivvniiiiniiiiiei e e e e e e e e e e e et e e e e et e e aaneeeens 167
10.2.10. MESSAGE.IESUME- T ..vuiiiniiiiieii e et e e et e e e e e e e et e e et e et e e et e e eaneeeanees 168
10.2.11. Message.delivVery-MOCEcoouiiiiiiiiiiii e 169
10.2.12. Message.deliVEry-Priorityicieuieiii i 170
10.2.13. MeSSage.flOW-MOOEccouiiiiiii e 171
10.2.14. MesSage.Credit-UNItccccuiiiiiiiiiiie e e e e e e e e e e aaas 172
10.2.15. MESSAQEATANSIEr ...t 173
10.2.16. MESSAGE.ACCEPE ..uvuitiiee ettt 175
O A 1115 o [= = AP 176
O T 0415 o [= (== S P 177
10.2.19. MESSAYE.ACUITE .vuevrneerueeit i eeeteeeteestseeataestt e estn e e et e e st eeanaeeanseeatneeenneeennns 178
10.2.20. MESSAGE.IESUMIE ..euiuieneitee e te e et e e e et e e et e e et e e e et e e e e e aaneens 179

10.3.

10.4.

10.6.

10.7.

10.2.21. Message.SUDSCIIDEcii i 180
O 1 11c 5o (X o= 4 o= 182
10.2.23. message.Set-FlOW-MOCEcooviiii e 183
10.2.24. MESSAYEFIOW ..o 184
10.2.25. MESSAGEFIUSN .oeiii i 185
10.2.26. MESSAGE.SIOD wuuvuiiiiiiitt ittt 186
10 G PR 188
L0 2 R 1 =~ PRSPPI 188
O T = 1= PR 188
L0 e T oo .41 0 PP 189
10.3.4. tXFOHDACK et 190
0| GO 192
L0 O (1 =~ PRSPPI 193
10.4.2. GEXXBTESUIT .ot et e e e et 193
L0 e e 10165 (Lo PSP 194
O s |0 = = - LU < P 195
L1045, GEXSEIECE it 196
L0 T 0 |0t - AP SPPRT 197
O o |01 = oo PP 199
10.4.8. AEX.COMIMIL eiueiee e e e e et e et e e e et e e e e et e e e e e b e e e e eaan s 201
00 T 017 oo = PN 203
L0 (O e ot 1= 1 11= 0 LU | P 204
00 Bt 0 ot o = o TN 205
L0 o 01 1 oY= PR 207
10.4.13. dEXFOHDACK ... 208
10.4.14. OEXSEE-LIMEOUL .oevineiiiiii et e e et e e e e e e e e e e eaen s 210
oo g o N 212
0T T 1 =~ PRSPPI 212
10.5.2. BXChANGEINAIME ...ivuiiiiii e e e e e e e e e e e e et e et e e et e eean s 213
10.5.3. XChaNQE.AECIAIEcvviiiii i et e e e e e 214
10.5.4. eXChanQeAEIEIEciiiiiiiii e 217
10.5.5. EXChANGE.QUETY ovvniiiiiiii e et e e e e e e e e e e et e et e e et e e et e et e e st e aaanaaes 218
10.5.6. eXChange.biNdooiiiiiii e 219
10.5.7. exchangeUunbindccoiniiiiiiii e 222
10.5.8. eXChange.bouUNdoiiiiiiiiici e 223
0 0T PP 226
OG0 O 1 =~ PRSPPI 226
J0.6.2. QUEBUE.NEAITIE ...iuiitiititieitit ettt ettt et e e e e e et e aneenns 226
10.6.3. QUEUE.AECIAIEuiiiiciie et e e e e e e e e e e e e 227
10.6.4. QUEUEEIELEceviiiii i et 230
10,6, 5. QUBUE UM .ottt e e e e e e e e e e e e aas 231
J0.6.6. QUEBUE.GUEY .oieniiiieie it e e e e e e et e e e e et e e e e e e e e e e e e e e e aas 232
PSPPSR 234
O T 1 =~ PRSPPI 235
10.7.2. fillefilE-PrOPEIES oovviiiiii e e e 235
10.7.3. fIEIEIUMN-COUR ...iiiiiiiiei e e e e aaan s 236
O B 1= (o1 P 237
O T 1= (0TS o 238
10.7.6. FIlECONSUME ...iiiiiieeiii ettt e e et e e e et e e e e et e e e e et e e e eatenaeeees 239
10.7.7. FIlECONSUME-OKeiiiiie ettt e e et e e et e e e et e e e eete e eaeees 241
1O.7.8. fIlECANCE ...uiiiiiii e et e 242
O e T 1= o= o 243
10.7.20. fIlEOPEN-0K .ooviiiiiiei e e e e e 244
O 1] 1R = o TSP 245

10.7.22. fIlepUBIISN oo 246

O 00 T 11 1= = 01 o 248

JO.7.24. fIledEliVEr e 249

LO.7.15. fIlEACK et 250

O LG 1] 1= == o PP 251

O£ "0 o PSPPI 253
L0 1 =~ OSSP 254

10.8.2. Sream.Stream-PrOPEITIESiiviiiiii i eiii et e e e e e e e e e e e e e e e et e e e e e e e eanaas 254

10.8.3. SITEAMLIEIUINECOOE . .vvuiiiiiiiii e e e e e e e e e e e e e e e e e et e e et e e et eaaaaees 255

R (=" 11 0 o [0 TP PP 256

O =1 W (01 o S 257

10.8.6. SIrEAM.CONSUMIE ..iviitiitiitiit ittt ettt e e e e e e e et e et e et rea e e ananes 258

10.8.7. SITEAML.CONSUME-OK ...evuiiiieeiiieeit e eei e e st e e et e e et e et e e et e e st e e et e e s e eaa e eetnaeennnas 260

LR =1 = 1 o= 261

10.8.9. Stream.publishooe i 262

10.8.10. SLrEAMLIELUIN ...itit ittt e e e e e e e e e e ans 264

10.8.11. StrEAMLAEIIVEr ...iiiii e e e 265

T I 0= 1Y T L= RSP 267
O (7= o 1= 267
11.1.1. Mandatory EXChange TYPEScuvuiiiieeiii i e e e e e e e e e e eaen 267

11.1.2. Optional EXChaNge TYPES ...uueiiiieiiiieeie e et e e e e e e e et e et e e e e eenas 268

11.1.3. SysStemM EXChaNGEScvvviieii et e 270

11.1.4. Implementation-defined EXChange TYPESuuvvvnieiiiciiiieee e 271

T (o 1 7= 19T =\ o 1 o 271

D @ 1= = SR 271
0t o 101 BT = o 11 o 271

A . o100 ol I] = o0 272
12.1. Augmented BNF RUIESoiiiiiiei et e et e e et eeeaae e eeeees 272

2] =11 1 0= PP 272

N O 1] 0= oI I = £ 278
0 I g1 oo [0 ' 278
S B EaaTo = aaTc a1z o) I 0T N 279
B.1. AMQP Client ArChItECIUIE .. .cvuiiii i e e e et e e e e e eaens 279

Credits

1. Technical Contributors

Sanjay Aiyagari
Rajith Attapattu
Jason Brome
Tejeswar Das
Robert Godfrey
Pieter Hintjens
Navin Kamath
Matthias Radestock
Martin Ritchie
Rafael Schloming
Gordon Sim
Martin Sustrik
Kim van der Riet

Cisco Systems

Red Hat

Envoy Technologies
IONA Technologies
JPMorgan Chase
iMatix Corporation
IONA Technologies
Rabbit Technologies
JPMorgan Chase
Red Hat

Red Hat

iMatix Corporation
Red Hat

Matthew Arrott Twist Process Innovations
Mark Atwell JPMorgan Chase

Alan Conway Red Hat

Tony Garnock-Jones Rabbit Technologies
Robert Greig JPMorgan Chase

John O'Hara JPMorgan Chase

Hsuan-Chung Lee Cisco Systems
Alexis Richardson Rabbit Technologies

Shahrokh Sadjadi Cisco Systems
Steven Shaw JPMorgan Chase
Arnaud Simon Red Hat

Carl Trieloff Red Hat

Steve Vinoski |ONA Technologies

We also wish to acknowledge the technical contributions of a number of individuals from Credit Suisse.

2. Reviewers

Kayshav Dattatri
Rupert Smith
Andrew Stitcher

Cisco Systems
JPMorgan Chase
Red Hat

Aidan Skinner
Subbu Srinivasan

JPMorgan Chase
Cisco Systems

Xi

Part |. Concepts

Table of Contents

L OVEBIVIBIW ettt ettt ettt e et e et e e et e et e eaa s 4
1.1. GOaAlS Of ThiS DOCUMENTuueiiiii ettt ettt et ettt ettt s et et e e a et e eba e e enna e eennen 4
D - (= 01 PP UPPTRPIN 4
R RS N 10111 T Y PP PRTPPRTR 4

1.3.1. WHat 1S AMOP? L.t ettt e e et e e et e e e e e eee 4
1.3.2. WHY AMOP? <.ttt 4
1.3.3. SCOPE OF AIMQIP ...t et et ettt et e e eee 4
1.3.4. The Advanced Message QUEUING ProtOCOIlooeiiiuiiiiiiiie e 5
1.3.5. FUNCLIONGL SCOPE ...ttt ettt ettt ettt e et et e e et et e et e et e e e enba e eeeees 7
1.4. Organization Of ThiS DOCUMENTuuuiiiiii ittt ettt e e e e eaa s 7
L5, CONMVENTIONS ...ttt ettt e et e e et e e et et e e et et e e et et e e et et e e e e et aeeeeba s 7
15,0, DEFINITIONS ..ottt e et e et e et e e et e e 7
1.5.2. Version NUMDEINGueeeiiiee ettt ettt e ettt e et et s e e e et e e e e ena e e e eeraaeeene 8
1.5.3. TechniCal TEMUNOIOGY eeeetuieeeeiie ettt ettt e ettt e et et e e e e e ena e eenanns 8

2. The AMOP MOGEL ... ettt e e ettt e e et e e et et e e et et e e e ente e eeenes 11

2.1. Introduction t0 The AMQP MOGEoouii e e e e e e 11
2.1.1. THE MESSAJE QUEUIE ... ittt ettt ettt e et e e et e e e e et e e et et e e e e naa s 11
2.1.2. TRE EXCRBINGE .. ettt et et ettt ettt e et e et e et e e et et e e e abn e eene 12
2.1.3. The ROULING K@Y ..t 12
214, ANAlOgY 10 EMAI ... 12
215, MESSA0E FIOW ...ttt e 13

2.2, VIFTUBL HOSES ...ttt ettt ettt e et e e e et e e e eba s 15

2.3 EXCIANGES ...ttt e s 15
2.3.1. TYPES OF EXCHANGE ...cevvneeiiiii ettt ettt et e e e e e s 16
2.3.2. EXChange LifE-CYCIE ...couuiiiiii et 18

2.4, MESSAYR QUEUESevueete ittt e ettt e e ettt e et e et e et et e et et e et e e e en 18
2.4.1. MeSsage QUEUE PrOPEITIESiieeie ettt ettt e e e e eeea s 19
2.4.2. QUEUE LITE-CYCIES ...ttt et 19

2.5, BINOINGS ..ttt ettt e e 19
2.5.1. Constructing & Shared QUEUEcuuuuiiiiiii ettt e et ettt e e et e e et eeeeai e eees 20
2.5.2. Constructing @ REPIY QUEUEciieiieieii ettt ettt e e e eenans 20
2.5.3. Constructing a Pub-Sub SubsCription QUEUEcouuuiiiiiiiieeiii e 21

2.6, IMIBSSBIESiitiieiii ettt et 22
2.6. 1. FIOW CONEIOL ...ttt et ettt et e et e e e et e e e na e e enaans 22
2.6.2. Transfer of RESPONSIDITITYccevuunieiiiii e 22

2.7, SUDSCIILIONS ... eeete ettt ettt ettt ettt e e ettt e e et e e et et e e et et e e et et e e et et e e et et e e e ena s 22

2.8, THFANSACLIONS ... eieiti ettt ettt ettt ettt e e et e et e et e b e e et e b e et et et et eeeaa s 22

2.9. Distributed TIanNSBCIIONSceueueiiiii ettt ettt ettt r et e et e e e e e e ra s 23
2.9.1. Distributed TranSaCtion SCENAIOc.cuuuieiiiiieee ittt e e 24

S <SS 0] TSSO 25

3.1, SESSION DEFINITION «.ooeeniieii et et ettt e e et e e enaaas 25
3. L.1. SESSION LITEIME ..ottt ettt e et e e et e e e 25
3.1.2. A Transport FOr COMMENGSccevruneeiitieeeeit ettt e et e et e e e e eneaes 25
31,3, SESSION @S @ LAYEN ..ttt 25

3.2, SESSION FUNCHIONAITLY ...eeeeeeieei ettt ettt e e e e e ena s 26
3.2.1. Sequential [dentifiCatioNcouuuiiiiii e e 26
3.2.2. CONFIMMELION ...ttt ettt e et e et e et e e e e eaa s 26
3.2.3. COMPLELION ...t ettt e ettt e e et e e e e n e eeeaa e aees 26
3.2.4. Replay and RECOVENYniiiiiii ettt e e e e e eeaans 27

3.3, TranSPOIt FEQUITEIMIENES ... eieeti e et e ettt ettt et e et e et et e e et et e e et et e e et et e e et st e e e eebaes 27

3.4, Commands aNd CONLIOIScieiti e e ettt e et e e e et e e enta e eeene 27

Concepts

3 B I @0 041 7= [0 = PP 27
I3 B O o 4 11 (0] = PP 28
S == T I =Y = T 28
35,1 ALACHIMENT ..o e 29
3.5.2. SESSION JAYEN SLALE ..oevuiiii et aa 29
KIS T (= 1= o1 PP 29
KIS B (=0 29
3.6. USING SESSION CONLIOISuiitiiiiee et ee e e e e e e e e e e e e e e e e e e et e e et e e et e e et e e st e eeaneesneeeen 30
3.6.1. Attaching t0 @ "NEW" SESSIONuuiiiiiiiiieii et et e et e e e e e e e e e e et e e et e et e e aaeeeenns 30
3.6.2. Attempting to re-attach t0 an eXiStiNg SESSIONccvvuiiii i 31
3.6.3. Detaching ClEANIYovuiiiii e 32
G330 @ 0T 1 o PN 33

1. Overview

1.1. Goals of This Document

This document defines a networking protocol, the Advanced Message Queuing Protocol (AMQP), which enables
conforming client applications to communicate with conforming messaging middleware services. To fully achievethis
interoperability we also define the normative behavior of the messaging middleware service.

We address a technical audience with some experience in the domain, and we provide sufficient specifications and
guidelines that a suitably skilled engineer can construct conforming solutions in any modern programming language
or hardware platform.

1.2. Patents

A conscious design objective of AMQP was to base it on concepts taken from existing, unencumbered, widely
implemented standards such those published by the Internet Engineering Task Force (IETF) or the World Wide Web
Consortium (W3C).

Consequently, we believe it is possible to create AMQP implementations using only well known techniques such as
those found in existing Open Source networking and email routing software or which are otherwise well-known to
technology experts.

1.3. Summary

1.3.1. What is AMQP?

The Advanced Message Queuing Protocol (AMQP) enablesfull functional interoperability between conforming clients
and messaging middleware servers (also called "brokers").

1.3.2. Why AMQP?

Our god is to enable the development and industry-wide use of standardized messaging middleware technology that
will lower the cost of enterprise and systems integration and provide industrial-grade integration services to a broad
audience.

It is our aim that, through AMQP, messaging middleware capabilities may ultimately be driven into the network
itself, and that through the pervasive availability of messaging middleware, new kinds of useful applications may be
developed.

1.3.3. Scope of AMQP

To enable complete interoperability for messaging middleware requires that both the networking protocol and the
semantics of the broker services are sufficiently specified.

AMQP, therefore, defines both the network protocol and the broker services through:

1. A defined set of messaging capabilities called the " Advanced Message Queuing Protocol Model" (AMQP Model).
The AMQP Model consists of a set of components that route and store messages within the broker, plus a set of
rules for wiring these components together.

2. A network wire-level protocol, AMQP, that lets client applications talk to the broker and interact with the AMQP
Model it implements.

Overview

One can partialy imply the semantics of the server from the AMQP protocol specifications but we believe that an
explicit description of these semantics hel ps the understanding of the protocol.

1.3.4. The Advanced Message Queuing Protocol
1.3.4.1. The AMQP Model

We define the server's semantics explicitly, since interoperability demands that these semantics be the same in any
given server implementation.

The AMQP Model thus specifies a modular set of components and standard rules for connecting these.

There are three main types of component, which are connected into processing chainsin the server to create the desired
functionality:

1. The "exchange' receives messages from publisher applications and routes these to "message queues’, based on
arbitrary criteria, usually message properties or content.

2. The "message queue" stores messages until they can be safely processed by a consuming client application (or
multiple applications).

3. The"binding" definestherelationship between amessage queue and an exchange and providesthe message routing
criteria.

Using thismodel we can emulate the classic middieware concepts of store-and-forward queues and topic subscriptions
trivially.

In very grossterms, an AMQP server is analogous to an email server, with each exchange acting as a message transfer
agent, and each message queue as a mailbox. The bindings define the routing tables in each transfer agent. Publishers
send messagesto individual transfer agents, which then route the messages into mailboxes. Consumers take messages
from mailboxes.

In many pre:AMQP middleware systems, by contrast, publishers send messages directly to individual mailboxes (in
the case of store-and-forward queues), or to mailing lists (in the case of topic subscriptions).

The differenceisthat when the rules connecting message queues to exchanges are under control of the architect (rather
than embedded in code), it becomes possible to do interesting things, such as define arule that says, "place a copy of
all messages containing such-and-such a header into this message queue”.

The AMQP model was conceived with the following goals:

1. To support the semantics required by the financial servicesindustry.

2. Toprovidethelevels of performance required by the financial servicesindustry.

3. Tobeeasily extended for new kinds of message routing and queuing.

4. To permit the server's specific semantics to be programmed by the application, viathe protocol.
5. Tobeflexible yet simple.

1.3.4.2. The AMQP Protocol

The AMQP protocol isabinary protocol with modern features: it is multi-channel, negotiated, asynchronous, secure,
portable, neutral, and efficient.

AMQP isusefully split into three layers:

Overview

e Mdel------------------------- +
I I
| Messages Queues Exchanges |
I I
| Access Control Transacti ons |
I I
| Dat a Types |
I I
e e e e e e e e mmeeeeeeeeccmeeeeememmeesmeeceeeea——- +
e Session------------------------ +
I I
| Commands Control s Excepti ons |
I I
| Confirmation Conpl eti on |
I I
| Repl ay Synchroni zat i on |
I I
e e e e e e e e mmeeeeeeeeccmeeeeememmeesmeeceeeea——- +
e Transport----------------------- +
Dat a Encodi ng Fram ng Fai l ure Detection

Mul ti pl exi ng

The model layer defines a set of commands (grouped into logical classes of functionality) that do useful work on
behalf of the application.

The session layer provides reliable transport of commands from application to server and back with replay,
synchronization, and error handling.

The transport layer provides framing, channel multiplexing, failure detection, and data representation.

One could replace the transport layer with arbitrary transports without changing the application-visible functionality
of the protocol. One could also use the same session layer for different high-level protocols.

The design of the AMQP Model was driven by these requirements:

1. To guaranteeinteroperability between conforming implementations.

2. To provide explicit control over the quality of service.

3. To support any middleware domain: messaging, file transfer, streaming, RPC, etc.
4. To accommodate existing open messaging API standards (for example, Sun's IMS).
5. To be consistent and explicit in naming.

6. To alow complete configuration of server wiring viathe protocol.

7. To use acommand notation that maps easily into application-level API's.

8. Tobeclear, so each operation does exactly one thing.

The design of the AMQP transport layer was driven by these main requirements, in no particular order:
1. Tobecompact, using abinary encoding that packs and unpacks rapidly.

2. To handle messages of any size without significant limit.

Overview

3. To permit zero-copy datatransfer (e.g. remote DMA).

4. To carry multiple sessions across a single connection.

5. Toalow sessionsto survive network failure, server failover, and application recovery.
6. To belong-lived, with no significant in-built limitations.

7. To beasynchronous.

8. To beeasily extended to handle new and changed needs.

9. To beforward compatible with future versions.

10. To be repairable, using a strong assertion model.

11. To be neutral with respect to programming languages.

12. Tofit acode generation process.

1.3.5. Functional Scope

We support avariety of messaging architectures:

1. Store-and-forward with many writers and one reader

2. Transaction distribution with many writers and many readers
3. Publish-subscribe with many writers and many readers

4. Content-based routing with many writers and many readers
5. Queued file transfer with many writers and many readers

6. Point-to-point connection between two peers
1.4. Organization of This Document

The document is divided into two parts:

1. "Concepts', which provides and introduction to the concepts in AMQP, a narrative introduction to how AMQP
works, and how AMQP may be used.

2. "Specification", in which we define precisely the semantics of every part of the AMQP model layer; the session
layer; and define awire format for the transmission of AMQP over a network.

1.5. Conventions

1.5.1. Definitions
1. Weusetheterms MUST, MUST NOT, SHOULD, SHOULD NOT, and MAY as defined by IETF RFC 2119.
2. Weusetheterm "the server" when discussing the specific behavior required of a conforming AMQP server.

3. Weusetheterm "the client" when discussing the specific behavior required of a conforming AMQP client.

Overview

We use the term "the peer" to mean "the server or the client".
All numeric values are decimal unless otherwise indicated.

Protocol constants are shown as upper-case names. AMQP implementations SHOULD use these hames when
defining and using constants in source code and documentation.

Property names, command or control arguments, and frame fields are shown as lower-case names. AMQP
implementations SHOUL D use these names consistently in source code and documentation.

1.5.2. Version Numbering

The AMQP version is expressed using two numbers — the major number and the minor number. By convention, the
version is expressed as the major number followed by a dash, followed by the minor number. (For example, 1-3 is
major = 1, minor = 3.)

1

2.

Major and minor numbers may take any value between 0 and 255 inclusive.

Minor numbers are incremented with the mgjor version remaining unchanged. When the AMQP working group
decides that a major version is appropriate, the major number isincremented, and the minor number is reset to 0.
Thus, a possible sequence could be 1-2, 1-3, 1-4, 2-0, 2-1...

Once the protocol reaches production (major >= 1), minor numbers greater than 9 would be strongly discouraged.
However, prior to production (versions 0-x), this may occur owing to the rapid and frequent revisions of the
protocol.

Once the protocol reaches production (major >=1), backwards compatibility between minor versions of the same
major version must be guaranteed by implementers. Conversely, backwards compatibility between minor versions
prior to production is neither guaranteed nor expected.

Major version numbers of 99 and above are reserved for internal testing and development purposes.

1.5.3. Technical Terminology

The following terms have special significance within the context of this document:

1

AMQP Model: A logical framework representing the key entities and semantics which must be made available
by an AMQP compliant server implementation, such that the server can be meaningfully manipulated by AMQP
Commands sent from a client in order to achieve the semantics defined in this specification.

Connection: A network connection, e.g. a TCP/IP socket connection.
Session: A named dialog between peers. Within the context of a Session, exactly-once delivery is guaranteed.

Channel: An independent bidirectional stream within a multiplexed connection. The physical transport for a
connected session.

Client: Theinitiator of an AMQP connection or session. AMQP is hot symmetrical. Clients produce and consume
messages whereas servers queue and route messages.

Server: The process that accepts client connections and implements the AMQP message queuing and routing
functions. Also known as "broker”

Peer: Either party in an AMQP dialog. An AMQP connection involves exactly two peers (one is the client, one
isthe server)

Overview

10.

11

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

Partner: The term Partner is used as a convenient shorthand for describing the "other" Peer when describing an
interaction between two Peers. For example if we have defined Peer A and Peer B as opposite ends of a given
interaction, then Peer B is Peer A's Partner and Peer A is Peer B's partner.

Assembly: An ordered collection of Segments that form alogical unit of work.

Segment: An ordered collection of Frames that together form a complete syntactic sub-unit of an Assembly.
Frame: The atomic unit of transmission in AMQP. A Frameis an arbitrary fragment of a Segment.

Control: A formally defined one-way instruction assumed to be unreliably transported.

Command: A formally defined and identified instruction requiring acknowledgement. AM QP attemptsto reliably
transport Commands.

Exception: A formally defined error condition that may occur during execution of one or more commands.
Class: A collection of AMQP commands or controls that deal with a specific type of functionality.
Header: A specific type of Segment that describes properties of message data.

Body: A specific type of Segment that contains application data. Body segments are entirely opaque - the server
does not examine or modify these in any way.

Content: The message data contained within a body segment.

Exchange: An entity within the server which receives messages from producer applications and routes these to
message queues within the server.

Exchange Type: The classification of an exchange based on routing semantics.
Message Queue: A named entity that holds messages until they can be sent to consumer applications.
Binding: A relationship that defines routing between a Message Queue and an Exchange.

Binding Key: A namefor abinding. Some exchange types may usethisasapattern that definestherouting behavior
for the Binding.

Routing Key: A message header that an Exchange may use to decide how to route a specific message.
Durable: A server resource that survives a server restart.

Transient: A server resource that iswiped or reset after a server restart.

Persistent: A message that the server holds on reliable disk storage and MUST NOT lose after a server restart.
Non-Persistent: A message that the server holdsin memory and MAY lose after a server restart.

Consumer: A client application that requests messages from a message queue.

Producer: A client application that publishes messages to an exchange.

Virtual Host: A collection of exchanges, message queues and associated objects. Virtua hosts are independent
server domains that share a common authentication and encryption environment. The client application chooses
avirtual host after logging in to the server.

These terms have no special significance within the context of AMQP:

1.

Topic: Usually ameans of distributing messages; AMQP implements topics using one or more types of exchange.

Overview

Service: Usually synonymous with server. The AMQP standard uses "server" to conform with IETF standard
nomenclature and to clarify the roles of each party in the protocol (both sides may be AMQP services).

Broker: synonymous with server. The AMQP standard uses the terms " client" and "server" to conform with IETF
standard nomenclature.

10

2. The AMQP Model
2.1. Introduction to The AMQP Model

This section explains the server semantics that must be standardized in order to guarantee interoperability between
AMQP implementations.

This diagram shows the overall AMQP Model:

Server
foocccocococcooscoocosooccoooooooo +
| Virtual host |
| ffmccccooooomoo--ocoocc=oo + |
[[[[

fmocccoocooo=o + | | fmoccooocoos + | |
| Publisher | ---------- > | Exchange | | |
| Application | | | oo oo A | |
fmmessosescoas o | |
[[[[[
| | | Bi nding | |
[[[[[
[[\[/ [[
fbmcccccoooo=oeona + | | fmcccoo==ona + | |
| Consuner | <ememeea--- | Message | | |
| Application | | | | Queue | | |
fbmcccccoooo=oeona + | | fmcccoo==ona + | |
| ffmccccooooomoo--ocoocc=oo + |
foocccocococcooscoocosooccoooooooo +

We can summarize what a middleware server is: it is a data server that accepts messages and does two main things
with them; it routes them to different consumers depending on arbitrary criteria, and it buffers them in memory or on
disk when consumers are not able to accept them fast enough.

In a preeAMQP server these tasks are done by monolithic engines that implement specific types of routing and
buffering. The AMQP Model takes the approach of smaller, modular piecesthat can be combined in more diverse and
robust ways. It starts by dividing these tasks into two distinct roles:

1. The exchange, which accepts messages from producers and routes them to message queues.
2. The message queue, which stores messages and forwards them to consumer applications.

Thereis aclear interface between exchange and message queue, called a"binding”, which we will cometo later. The
usefulness of the AMQP Maodel comes from three main features:

1. The ability to create arbitrary exchange and message queue types (some are defined in the standard, but others can
be added as server extensions).

2. The ability to wire exchanges and message queues together to create any required message-processing system.
3. The ability to control this completely through the protocol.

In fact, AMQP provides runtime-programmable semantics.

2.1.1. The Message Queue

A message queue stores messages in memory or on disk, and delivers these in sequence to one or more consumer
applications. Message queues are message storage and distribution entities. Each message queue is entirely
independent.

11

The AMQP Model

A message queue has various properties. private or shared, durable or transient, permanent or temporary. By selecting
the desired properties, we can use a message queue to implement conventional middleware entities such as:

1. A standard stor e-and-forwar d queue, which holds messages and distributes these between subscribers on around-
robin basis. Store and forward queues are typically durable and shared between multiple subscribers.

2. A temporary reply queue, which holds messages and forwards these to a single subscriber. Reply queues are
typically temporary, and private to one subscriber.

3. A "pub-sub" subscription queue, which holds messages collected from various " subscribed" sources, and forwards
these to a single subscriber. Subscription queues are typically temporary, and private to one subscriber.

These categoriesare not formally defined in AM QP: they are examples of how message queues can be used. Itistrivial
to create new entities such as durable, shared subscription queues.

2.1.2. The Exchange

An exchange accepts messages from a producer application and routes them to message queues according to pre-
arranged criteria. These criteria are called "bindings'. Exchanges are matching and routing engines. That is, they
inspect messages and using their binding tables, decide how to forward these messages to message queues. Exchanges
never store messages.

Theterm "exchange" is used to mean both aclass of algorithm, and the instances of such an algorithm. More properly,
we speak of the "exchange type" and the "exchange instance".

AMQP defines a number of standard exchange types, which cover the fundamental types of routing needed to do
common message delivery. AMQP servers will provide default instances of these exchanges. Applications that use
AMQP can additionally create their own exchange instances. Exchange types are named so that applications which
create their own exchanges can tell the server what exchange type to use. Exchange instances are also named so that
applications can specify how to bind queues and publish messages.

The exchange concept is intended to define amodel for adding extensibile routing behavior to AMQP servers.

2.1.3. The Routing Key

In the general case, an exchange examines a message's properties, its header fields, and its body content, and using
this and possibly data from other sources, decides how to route the message.

In the majority of simple cases, the exchange examines asingle key field, which we call the "routing key". The routing
key isavirtual address that the exchange may use to decide how to route the message.

For point-to-point routing, the routing key is the name of a message queue.
For topic pub-sub routing, the routing key is the topic hierarchy value.

In more complex cases, routing may be based on message header fields and/or the message body.

2.1.4. Analogy to Email
If we make an analogy with an email system, we see that the AM QP concepts are not radical:
1. An AMQP message is analogous to an email message.

2. A message queue is like a mailbox.

12

The AMQP Model

3. A consumer islike amail client that fetches and deletes email.

4. Anexchangeislikean MTA (mail transfer agent) that inspects email and decides, on the basis of routing keys and
tables, how to send the email to one or more mailboxes.

5. A routing key correspondsto an email To: or Cc: or Bec: address, without the server information (routing is entirely
internal to an AMQP server).

6. Each exchange instance is like a separate MTA process, handling some email sub-domain, or particular type of
email traffic.

7. A binding islike an entry in an MTA routing table.

The power of AMQP comes from our ability to create queues (mailboxes), exchanges (MTA processes), and bindings
(routing entries), at runtime, and to chain these together in waysthat go far beyond a simple mapping from "to" address
to mailbox name.

We should not take the email-AMQP analogy too far: there are fundamental differences. The challengein AMQP is
to route and store messages within a server. Routing within aserver and routing between servers are distinct problems
and have distinct solutions, if only for banal reasons such as maintaining transparent performance.

To route between AMQP servers owned by different entities, one sets up explicit bridges, where one AMQP server
acts as the client of another server for the purpose of transferring messages between those separate entities. This way
of working tends to suit the types of businesses where AMQP is expected to be used, because these bridges are likely
to be underpinned by business processes, contractual obligations and security concerns. Thismodel also makes AMQP
'spam’ more difficult.

2.1.5. Message Flow

This diagram shows the flow of messages through the AMQP Model server:

fmooocososooos + LT +
| Publisher | ----------------- > | Message|
| application | e
R + |
I
L +
| Exchange |
o oo ode oo odb
I
fmooooooooo=s fmooooooooo=s +
I I I
Message Message Message
Queue Queue Queue
fmooocososooos + LT + LT + LT +
| Consuner | o - - + o - - + o - - +
| application | <---- | Message| R + R +
fmooocososooos + LT + LT + LT +

2.1.5.1. Message Life-cycle
An AMQP message consists of a set of header properties plus an opague body.

A new message is created by a producer application using a client AP ! The producer places application data in the
message body and perhaps sets some message properties. The producer labels the message with routing information,

INote that the AMQP specification does not currently define a standard client API.

13

The AMQP Model

whichissuperficialy similar to an address, but almost any scheme can be created. The producer then sendsthe message
to an exchange on the server.

When the message arrives at the server, the exchange (usually) routes the message to a set of message queues which
also exist on the server. If the message is unroutable, the exchange may drop it silently, rgject it, or route it to an
alternate exchange depending on the behavior requested by the producer.

A single message can exist on many message queues. An AMQP server implementation may handle thisin different
ways, by copying the message, by using reference counting, etc. This does not affect interoperability. However, when
amessage is routed to multiple message queues, it isidentical on each message queue. There is no unique identifier
that distinguishes the various copies.

When a message arrivesin a message queue, the message queue triesimmediately to passit to a consumer application
via AMQP. If thisis not possible, the message queue stores the message (in memory or on disk as requested by the
producer) and waits for a subscriber to be ready.

When the message queue can deliver the message to a subscriber, it removes the message from its internal buffers.
This can happen immediately, or after the subscriber has successfully processed and explicitly accepted the message.
The subscriber chooses how and when messages are accepted. The subscriber can also release a message back onto
the queue, or reject a message as unprocessable.

Producer messages and subscriber accepts are grouped into "transactions'. When an application plays both roles, which
isoften, it does amix of work: sending and accepting messages, and then committing or rolling back the transaction 2

2.1.5.2. What The Producer Sees

By analogy with the email system, we can see that a producer does not send messages directly to a message queue.
Allowing this would break the abstraction in the AMQP Model. It would be like allowing email to bypassthe MTA's
routing tables and arrive directly in a mailbox. This would make it impossible to insert intermediate filtering and
processing, spam detection, for instance.

The AMQP Model uses the same principle as an email system: all messages are sent to a single point, the exchange,
which inspects the messages based on rules and information that are hidden from the sender, and routes them to drop-
off points that are also hidden from the sender.

2.1.5.3. What The Consumer Sees

Our analogy with email starts to break down when we look at consumers. Email clients are passive - they can read
their mailboxes, but they do not have any influence on how these mailboxes are filled. An AMQP consumer can also
be passive, just like email clients. That is, we can write an application that expects a particular message queue to be
ready and bound, and which will simply process messages off that message queue.

However, we also allow AMQP client applications to:

1. Create or destroy message queues.

2. Define the way these message queues are filled, by making bindings.

3. Select different exchanges which can completely change the routing semantics.
Thisislike having an email system where one can, viathe protocol:

1. Create anew mailbox.

2. Tell the MTA that all messages with a specific header field should be copied into this mailbox.

M essage deliveries from the server to the subscriber are not transacted.

14

The AMQP Model

3. Completely change how the mail system interprets addresses and other message headers.

We see that AMQP is more like alanguage for wiring pieces together than a system. Thisis part of our objective, to
make the server behavior programmable via the protocol.

2.1.5.4. Default Flow

Most integration architectures do not need this level of sophistication. Like the amateur photographer, a majority of
AMQP users need a "point and shoot" mode. AM QP provides this through the use of two simplifying concepts:

1. A default exchange for message producers.

2. A default binding for message queues that selects messages based on a match between routing key and message
queue name.

In effect, thedefault binding letsa producer send messagesdirectly to a message queue, given suitable authority —
it emulatesthe simplest " send to destination” addressing scheme people have cometo expect of traditional middieware.

2.2. Virtual Hosts

A Virtua Host 3 comprises its own name space, a set of exchanges, message queues, and all associated objects. Each
connection MUST BE associated with asingle virtual host.

The client selects the virtual host after authentication. This requires that the authentication scheme of the server is
shared between all virtual hosts on that server. The authorization scheme used MAY be unique to each virtual host.

All channels within the connection work with the same virtual host. There is no way to communicate with a different
virtual host on the same connection, nor is there any way to switch to a different virtual host without tearing down
the connection and beginning afresh.

The protocol offers no mechanisms for creating or configuring virtual hosts - this is done in an undefined manner
within the server and is entirely implementation-dependent.

2.3. Exchanges

An exchange is a message routing agent within a virtual host. An exchange instance (which we commonly call "an
exchange") accepts messages and routing information - principally arouting key - and either passes the messages to
message queues, or possibly to some internal service defined in a vendor extension. Exchanges are named on a per-
virtual host basis.

Applications can freely create, share, use, and destroy exchange instances, within the limits of their authority.

Exchanges may be durable, transient, or auto-deleted. Durable exchanges last until they are deleted. Transient
exchanges last until the server shuts-down. Auto-del eted exchanges last until they are no longer used.

The server provides a specific set of exchange types. Each exchange type implements a specific matching and routing
algorithm, as defined in the next section. AMQP mandates a small number of exchange types, and recommends some
more. Further, each server implementation may add its own exchange types.

An exchange can route a single message to many message queues in parallel. This creates multiple instances of the
message that are consumed independently.

3The term Virtual Host is taken from the use popularized by the Apache HTTP server. Apache Virtual Hosts enable Internet Service providers to
provide bulk hosting from one shared server infrastructure. We hope that theinclusion of this capability within AM QP opens up similar opportunities
to larger organizations.

15

The AMQP Model

2.3.1. Types of Exchange

Each exchangetypeimplementsaspecific routing algorithm. Thereareanumber of standard exchangetypes, explained
below, but there are two that are particularly important:

1. the direct exchange type, which routes based on an exact match between the binding key and routing key
2. the topic exchange type, which routes based on a pattern match between the binding key and routing key
Note that:

1. the default exchange (See: Section 2.1.5.4, “Default Flow”) is adirect exchange

2. the server will create a direct and (if supported) a topic exchange at start-up with well-known names and client
applications may depend on this

2.3.1.1. The Direct Exchange Type

The direct exchange type provides routing of messages to zero or more queues based on an exact match between
the routing key of the message, and the binding key used to bind the queue to the exchange. This can be used to
construct the classic point-to-point queue based messaging model, however, aswith any of the defined exchangetypes,
amessage may end up in multiple queues when multiple binding keys match the message's routing key.

The direct exchange type works as follows:

1. A message queue is bound to the exchange using a binding key, K.

2. A publisher sends the exchange a message with the routing key R.

3. The message is passed to all message queues bound to the exchange with key K where K = R.

The server MUST implement the direct exchange type and MUST pre-declare within each virtual host at least two
direct exchanges: one named "amg.direct", and one with no public name that serves as the default exchange for

message transfers to the server.

Note that message queues can be bound using any valid binding key value, but most often message queues will be
bound using their own name as the binding key.

In particular, all message queues MUST BE automatically bound to the namel ess exchange using the message queue's
name as the binding key.

2.3.1.2. The Fanout Exchange Type

The fanout exchange type provides routing of messages to all bound queues regardless of the message's routing key.
The fanout exchange type works as follows:

1. A message queue is bound to the exchange with no arguments.

2. A publisher sends the exchange a message.

3. The message is passed to the all message queues bound to the exchange unconditionally.

The server MUST implement the fanout exchange type and MUST pre-declare within each virtual host at least one
fanout exchange named "amgq.fanout".

16

The AMQP Model

2.3.1.3. The Topic Exchange Type

The topic exchange type provides routing to bound queues based on a pattern match between the binding key and the
routing key of the message. This exchange type may be used to support the classic publish/subscribe paradigm using a
topic namespace as the addressing model to select and deliver messages across multiple consumers based on apartial
or full match on atopic pattern.

The topic exchange type works as follows:

1. A message queue is bound to the exchange using a binding key, K.

2. A publisher sends the exchange a message with the routing key R.

3. The message is passed to the all message queues where K matches R.

The binding key is formed using zero or more tokens, with each token delimited by the . char. The binding key
MUST be specified in this form and additionally supports specia wild-card characters: *' matches a single word and
'# matches zero or more words.

Thus the binding key "*.stock.#" matches the routing keys "usd.stock" and "eur.stock.db" but not "stock.nasdaq".
This exchange typeis optional.

The server SHOULD implement the topic exchange type and in that case, the server MUST pre-declare within each
virtual host at least one topic exchange, named "amg.topic".

2.3.1.4. The Headers Exchange Type

The headers exchange provides for complex, multi-part expression routing based on header properties within the
AMQP message.

The headers exchange type works as follows:;

1. A message queue is bound to the exchange with atable of arguments containing the headers to be matched for that
binding and optionally the values they should hold.

2. A publisher sends a message to the exchange where the 'headers’ property contains a table of names and values.

3. The messageis passed to the queue if the headers property matches the arguments with which the queue was bound.
The matching algorithm is controlled by a specia bind argument passed as a name value pair in the arguments table.
The name of this argument is 'x-match'. It can take one of two values, dictating how the rest of the name value pairs

in the table are treated during matching:

(i) 'al" implies that all the other pairs must match the headers property of a message for that message to be routed
(i.e. an AND match)

(i1) "any" implies that the message should be routed if any of the fields in the headers property match one of the fields
in the arguments table (i.e. an OR match)

A field in the bind arguments matches a field in the message headers if either (1) the field in the bind arguments has
no value and afield of the same name is present in the message headers or (2) if the field in the bind arguments has a
value and afield of the same name exists in the message headers and has that same value.

Any field starting with 'x-' other than 'x-match' is reserved for future use and will be ignored.

17

The AMQP Model

The server SHOUL D implement the headers exchange type and in that case, the server MUST pre-declare within each
virtual host at least one headers exchange, named "amg.match".

2.3.1.5. The System Exchange Type

The system exchange type works as follows:

1. A publisher sends the exchange a message with the routing key S.
2. The system exchange passes this to a system service S.

System services starting with "amg." are reserved for AMQP usage. All other names may be used freely by server
implementations. This exchange typeis optional.

2.3.1.6. Implementation-defined Exchange Types

All non-normative exchange types MUST be named starting with "x-". Exchange types that do not start with "x-" are
reserved for future use in the AMQP standard.

2.3.2. Exchange Life-cycle

Each AMQP server pre-creates a number of exchanges (more pedantically, "exchange instances"). These exchanges
exist when the server starts and cannot be destroyed.

AMQP applications can also create their own exchanges. AMQP does not use a "create’ command as such; it uses
a"declare" command, which means: "create if not present, otherwise continue”. It is plausible that applications will
create exchanges for private use and destroy them when their work isfinished. AMQP provides acommand to destroy

exchanges but in general applications do not do this.

In our examples in this chapter, we will assume that the exchanges are al created by the server at start-up. We will
not show the application declaring its exchanges.

2.4. Message Queues

A message queue is anamed buffer that holds messages on behalf of a set of consumer applications. Applications can
freely create, share, use, and destroy message queues, within the limits of their authority.

M essage queues provide alimited FIFO guarantee. For messages of equal priority originating from a given producer,
delivery to a given consumer will always be attempted in the order the messages were placed on the queue. Should
theinitial delivery attempt not result in a consumed message, those messages MAY be redelivered out of order.

M essage queues may be durable, transient, or auto-del eted. Transient message queues last until the server shuts-down.
Auto-del eted message queues|ast until they are no longer used. Any queue may be explicitly deleted if the user (client)
has the appropriate permissions.

Message queues hold their messages in memory, on disk, or some combination of these.

Message queues are scoped to avirtua host.

Queue names must consist of between 1 and 255 characters. The first character must be limited to letters a-z or A-Z,
digits 0-9, or the underscore character (*_'); all those following must be legal UTF-8 characters.

M essage queues hold messages and distribute them to one or more subscribed clients.

18

The AMQP Model

M essage queues track message acquisition. Messages must be acquired to be dequeued. This prevents multiple clients
from acquiring and then consuming the same message simultaneously. This may be used to safely load balance
messages from a single queue among multiple consumers.

M essages from aqueue may be sent to more than one client if messages are released or wereinitially sent without being
acquired. Message queues may distribute unacquired messages to clientsin order to permit non destructive browsing
of the queue contents.

2.4.1. Message Queue Properties
When aclient application creates a message queue, it can select some important properties:
1. name - Generally, when applications share a message queue they agree on a message queue name beforehand.

2. durable - If specified, the message queue remains present and active when the server restarts. It may lose non-
persistent messages if the server restarts.

3. auto-delete- If specified, the server will delete the message queue when al clients have finished using it, or shortly
thereafter.

2.4.2. Queue Life-cycles
There are two main message queue life-cycles:

1. Durable message queues which are shared by many subscribers and have an independent existence - i.e. they will
continue to exist and collect messages whether or not there are subscribers to receive them.

2. Tempor ary message queueswhich are private to one subscriber and aretied to that subscriber. When the subscriber
is cancelled, the message queue is del eted.

There are some variations on these, such as shared message queues which are deleted when the last of many
subscribersis cancelled.

This diagram shows the way temporary message queues are created and del eted:

Message
Queue
+emm - - - +
Decl are to------ + Message queue is created
-------- > 4-------+
Femmmmmeeaao- + +emm - - - +
| Consuner | Subscri be
| application | -------- >
R + \ /
Cancel HN----/*

———————— > +--\\//-+ Message queue is deleted
+--//\\-+
+[----*
/ \

2.5. Bindings

A binding is arelationship between a message queue and an exchange. The binding specifies routing arguments that
tell the exchange which messages the queue should get.

19

The AMQP Model

Applications create and destroy bindings as needed to drive the flow of messages into their message queues. The
lifespan of bindings depend on the message queues and exchanges they are defined for - when a message queue, or
an exchange, is destroyed, its bindings are also destroyed.

Bindings are constructed by commands from the client application (the one owning and using the message queue) to
an exchange. We can express a binding command in pseudo-code as follows:

Exchange. Bi nd <exchange> TO <queue> WHERE <condi ti on>
The specific semantics of the Exchange.Bind command depends on the exchange type.

Let'slook at three typical use cases: shared queues, private reply queues, and pub-sub subscriptions.

2.5.1. Constructing a Shared Queue

Shared queues are the classic middleware point-to-point queue. In AM QP we can use the default exchange and default
binding. Let's assume our message queueis called "app.svc01". Hereisthe pseudo-code for creating the shared queue:

Queue. Decl are
gqueue=app. svc01
excl usi ve=FALSE

We may have many consumers on this shared queue. To consume from the shared queue, each consumer does this:

Message. Subscri be
queue=app. svc0l

To publish to the shared queue, each producer sends a message to the default exchange:

Message. Transfer
routi ng_key=app. svc01

2.5.2. Constructing a Reply Queue

Reply queues are usually temporary. They are also usually private, i.e. read by a single subscriber. Apart from these
particularities, reply queues use the same matching criteriaas standard queues, so we can also use the default exchange.
In order to prevent namespace clashes between temporary queues generated by different clients, it is recommended
that clients include a UUID (Universally Unique ID as defined by RFC-4122) or other globally unique identifier in
the queue name.

Hereisthe pseudo-code for creating areply queue:

Queue. Decl are
gueue=t np. 550e8400- e29b- 41d4- a716- 446655440000
excl usi ve=TRUE
aut o_del et e=TRUE

20

The AMQP Model

To publish to the reply queue, a producer sends a message to the default exchange:

Message. Transf er
routi ng_key=t np. 550e8400- e29b- 41d4- a716- 446655440000

One of the standard message properties is Reply-To, which is designed specifically for carrying the name of reply
queues.

2.5.3. Constructing a Pub-Sub Subscription Queue

In classic middleware, the term "subscription” is vague and refersto at least two different concepts: the set of criteria
that match messages and the temporary queue that holds matched messages. AM QP separates the work into bindings
and message queues.

A pub-sub subscription queue collects messages from multiple sources through a set of bindings that match topics,
message fields, or content in different ways. The key difference between a subscription queue and a named or reply
gueue is that the subscription queue name is irrelevant for the purposes of routing, and routing is done on abstracted
matching criteria rather than a 1-to-1 matching of the routing key field.

L et'stake the common pub-sub model of topic treesand implement this. We need an exchange type capabl e of matching
onatopictree. In AMQP, thisisthetopic exchangetype. Thetopic exchange matcheswild-cardslike"STOCK.USD.*"
against routing key valueslike "STOCK.USD.NY SE".

We cannot use the default exchange or binding because these do not support topic-style routing. So we have to create
abinding explicitly. Hereis the pseudo-code for creating and binding the pub-sub subscription queue:

Queue. Decl are
queue=t np. 2
aut o_del et e=TRUE

Exchange. Bi nd
exchange=any. t opi c
TO
queue=t np. 2
WHERE r out i ng_key=STOCK. USD. *

As soon as the binding is created, messages will be routed from the exchange into the queue, however, to consume
messages from the queue, the client must subscribe:

Message. Subscri be
gueue=t np. 2

When publishing a message, the producer does something like this:

Message. Tr ansfer
exchange=any. t opi c
routi ng_key=STCOCK. USD. | BM

21

The AMQP Model

The topic exchange processes the incoming routing key ("STOCK.USD.IBM") with its binding table, and finds one
match, for tmp.2. It then routes the message to that subscription queue.

2.6. Messages

A message isthe atomic unit of routing and queuing. Messages have a header consisting of adefined set of properties,
and abody that is an opague block of binary data.

M essages may be persistent - a persistent messageis held securely on disk and guaranteed to be delivered even if there
isaserious network failure, server crash, overflow etc.

Messages may have a priority level. A high priority message may be sent ahead of lower priority messages waiting in
the same message queue. When messages must be discarded, the server will first discard low-priority messages.

The server does not modify message bodies, but may modify specific message headers prior to forwarding them to
the consuming application.

2.6.1. Flow Control

Flow control may be used to match the rate at which messages are sent to the available resources at the receiver. The
receiver may be an AMQP server receiving messages published by aclient, or a client receiving messages sent by an
AMQP server from a queue. The same mechanism is used in both cases. In general, flow control uses the concept of
credit to specify how many messages or how many octets of data may be sent at any given point without exhausting
the receiver's resources. Credit is depleted as messages or data is sent, and increased as resources become free at the
receiver. Pre-fetch buffers may be used at the receiver to reduce latency.

2.6.2. Transfer of Responsibility

The receiver of a message signals the sender when responsibility for a message has been accepted. When a client
sends a message to a server, an accept from the server to the client confirms successful routing and placement of the
message on any queues. When a server sends a message to a client, an accept from the client to the server confirms
successful processing of the message, and signals the server to remove the message from the queue. AM QP supports
two different accept modes:

1. Explicit, in which the receiving application must send an accept for each message, or batch of messages, that is
transferred.

2. None, in which the message is considered accepted as soon as it is sent.

2.7. Subscriptions

We use the term subscription to mean the entity that controls how a specific client application receives messages from
a message queue. This is not to be confused with the separate notion of a subscriber in so-called publish/subscribe
messaging. When aclient "starts a subscription”, it creates a subscription entity in the server. When the client "cancels
asubscription”, it destroys a subscription entity in the server.

Subscriptions belong to a single client session and cause the message queue to send messages asynchronously to the
client.

2.8. Transactions

AMOQP defines two separate transaction models, a one-phase commit transaction model (known astx) and atwo-phase
commit model for distributed transactions (known as dtx). The standard, one-phase commit, model acts within the

22

The AMQP Model

scope of asingle session. The client has control over selecting whether a session isto be transactional or not, but once
a session has been selected as a transactional (by the issuance of at x. sel ect command) the session will remain
transactional until the point at which it is destroyed.

Once asession has been selected astransactional, then the commands issued by the client that instruct message transfer
and message acceptance on that session are only committed on the server once atx.commit command has been issued.
Other commands that alter server state are not transactional, and cannot be rolled back. For instance, the declaration
of queues and exchanges are not transactional . 4

If an AMQP client "publishes' a message (issues a nessage. t ransf er command) within the scope of a
transaction, then the message will not be availablefor delivery from any queueto whichit isrouted until the transaction
completes. The queues to which the message will be routed are determined at the point at which the message is
published, and not at the point of the commit. If the server rejects the message which is published this does not cause
rollback of the transaction. Rejection will happen as soon as the server has determined that the message should be
rejected and will not wait until a commit is issued.

When atransaction is rolled-back then the effects of the client issued publish and accept commands are discarded. It
should be noted that "acquiring” amessageis not atransactional operation, and thus any message acquired by the client
within the scope of the transaction remains acquired. In practice this means that after arollback the client still owns
all the messages which were delivered to it during the scope of the transaction (whether they were accepted or not). If
the client wishes the server to re-take responsibility for these messages, it must issue appropriate release commands.

2.9. Distributed Transactions

The distributed transaction class provides support for the X-Open XA architecture.

The dtx classis used to demarcate and coordinate transactions. The dtx.start and dtx.end commands demarcate AMQP
transactional work on agiven session. Transaction coordination and recovery are provided by the remaining commands
in the dtx class.

Both the OMG OTS and JTS/JTA modelsrely upon "Resource Manager Client” (RM Client) instances, which provide
an implementation of the XA interface for the underlying resource that are necessary to participate within a global
transaction. These RM Client instances are identified by Rmidsthrough either the xa_switch in C/C++ or XAResource
in Java

As depicted on the following figure, a Transaction Manager usesthe RM Client XA interface to demarcate transaction
boundaries and coordinate transaction outcomes. RM Clients use the dtx.start and dtx.end commands to associate a
transaction with a session. The transactional session is then exposed to the application driving the transaction, and
may be used to transactionally produce and consume messages. RM clients use the dtx coordination commands to
propagate transaction outcomes and recovery operations to the AMQP server. A second coordination session can be
used for that purpose.

A + S +
| | prepare/commit/roll back +----]| |

LR + XA | X| | >| CC | |
™ | <::::::::| A | | R | |
L + | | ===========+ | Coordi nati on | |
N +---+ start/end | | Session | AMP |

| start/ | | | | Server |

| commit/ +---+ RMdient | | Transactional | |

| roll back | A | | Session | |
fmasoccscasaas + | M| | 2200 |
| App| i cati on | < | Q | +:::| ::::::::::>| TC | |
L + produce | P | | +----| |
CONSUME +---+-----------oo-- + e +

A1t may help to think of it as the "enqueue" and "de-queue” operations on the message queues as being those that are controlled by transactions.

23

The AMQP Model

2.9.1. Distributed Transaction Scenario

Thefollowing diagram illustrates amessaging scenario where an application " Application” transactionally consumesa
message from aqueue Q1 (using transaction T1 achieved through the transaction manger TM). Based on the consumed
message, the application updates a database table Th using DBMS and produces a message on queue Q2 on behalf
of transaction T1.

Appl . ™ DBMS_RM Client AMQP_RM dient AMQP_Ser ver
I I I I I
| begin | I I I
Foomo=oo >+ xa_start(T1) | | |
| fhmccccooomoooooo >+ | |
| | xa_start (T1) | |
| R >+ dt x. sel ect |
| | | oo >+ 0\
[| | [dtx. start (xid1) | |
| | | fmesssmmesommcssooccooocooooos >+ |
| consune a nessage from QL | | | T
R e >+ nmessage. subscri be(QL) | | r
| | | oo >+ | a
| | | | accept nmessage M | | nS
| | | R LR LR T >+ | s e
| update a table | | | | as
LR LT T T >+ | | | ¢cs
| produce a nessage on @ | | |t
R e >+ nmessage. transfer (Q) | | i o
| | | R R >+ | on
| commit | I I | | n
T >+ | | | | a
| | xa_end(T1) | | | | I
fmmesemsosomes >+			
	xa_end(T1)		
Fo - >+ dt x. end(xi d1)			
		oo >+	
	xa_prepare(Tl)		
e >+		C	
	xa_prepare(T1)		o]
R >+ dt x. prepar e(xi d1)	\ o		
		oo >+	r S
	xa_commit(T1)		
e >+			i s
	xa_comni t (T1)	[[ns	
Fo - >+ dt x. conmi t (xi d1)		ai	
		oo >+ [/ t o	
I I I I I in
o]
/ n
Thread of control

24

3. Sessions

3.1. Session Definition

Sessionsare named interactions between AM QP peers. A session nameis scoped to an authentication principal, and the
name is determined by the application layer. Sessions may have state associated with them, on one or both of the peers
participating in the interaction. Every command which publishes a message, creates a queue or selects a transactional
mode must take place within the context of a session. Sessions are the foundation upon which the rest of AMQP rests.

A session can be seen as:

« the context in which AMQP's built-in exactly-once delivery operates (wider contexts can of course usefully be
defined at application levels)

« theinterface between the network protocol mapping and the model layers
« ascope for the lifetime of entities model such as entities queues, exchanges, and subscriptions

* the scope for command identifiers (see Section 3.2.1, “ Sequential Identification”)

3.1.1. Session Lifetime

Sessions are not explicitly created or destroyed, in a sense a session is "always there". Rather than creating a session,
a peer must attempt to "attach" to a session on its partner. The receiver of this attachment request can then look-up
whether it is holding any state for this session.

State related to a session must be retained by both peers while they are attached to a session. If the session becomes
detached (either through an explicit request to detach, or through the network connection between the two peers being
broken) then the state attached to the session may be held for some period of time which has previously been agreed
between the two peers.

3.1.2. A Transport For Commands

The AMQP model interacts by sending "commands" between the two peers. These commands are effectively sent
"over" the session. As a command is handed down from the model layer to the session, it is assigned an identifier.
These identifiers can then be used to correlate commands with results, or to perform synchronization on the otherwise
asynchronous AM QP command stream.

3.1.3. Session as a Layer

Sessions act as the interface between the network protocol mapping and the model layers. In particular it can be used
as a mechanism to ensure exactly-once delivery of acommand while the session state is retained by both peers. This
state (the "session state") consists of at |east

« areplay buffer of full or partial commands which a peer does not yet have confirmation its partner has received, and

 an idempotency barrier - aset of commands identifier which the peer knows that it has received but cannot be sure
that its partner will not attempt to re-send.

Since the session name is assigned by the application layer, there may be more state associated with it than the state
detailed here. This extra state may (for example) be used to perform recovery when the session state has expired.
However, inthischapter, when wetalk about session statewe will bereferring only to the state held at the session layer.

25

Sessions

3.2. Session Functionality

The session layer provides a number of crucial servicesto the model built on top of it:
» sequential identification of commands,

* confirmation that commands will be executed,

« notification when commands are complete,

* replay and recovery from network failure,

« reconciliation of state when peersfail.

3.2.1. Sequential Identification

Each command issued by a peer must be individualy identified in order for the system as a whole to be able to
guarantee exactly-once execution. The session layer uses a sequential numbering scheme with rollover to identify each
command uniquely within a session.

The notion of identity allows for correlation between commands and results being returned asynchronously. The
command identifier ismade visible through the model layer of the protocol. When aresult isreturned from acommand
the command identifier is used to correlate the result to the command which gaverisetoiit.

3.2.2. Confirmation

In order for a peer to be able to safely discard state related to a given command, it must receive a guarantee that the
command will be executed. To be slightly more precise, the sender must receive a confirmation that the command has
been executed, or that its delivery has been preserved to the desired degree of durability.

In practice there are two types of messages that one may wish to send through a messaging system: durable messages
and transient messages. For atransient message the general contract of the messaging system to the application is that
messages may be lost if the messaging system itself loses transient state (e.g. in the case of a power outage). For a
durable message, the messaging system must make the guarantee that the message will be held in the most durable
store available.

The session layer handles the sending and receiving of confirmations. This allows the session layer to manage the
state that it needs to hold in order to be able to recover in the case of a temporary failure of either peer, or of the
transport between the peers.

Confirmations can be batched or deferred indefinitely. In particular if a peer does not require an urgent confirmation
notification, the confirmation may be omitted asit isimplied by the completion of the command.

3.2.3. Completion

Separate from the notion of confirmation isthe notion of compl etion. For the purposes of synchronization and to ensure
atotal ordering between different sessions, it is necessary for a peer to be informed when a particular command has
been completely executed. Completion necessarily implies confirmation.

Where the peer has not requested urgent notification of completion, such notifications can be deferred and batched to
apply to arange of commands. Thisreducesthe amount of network traffic. The use of sequential idsto name commands
allows a compact encoding of a batch of consecutive completions.

26

Sessions

For example, if three queues are declared in sequence, as commands 1 to 3; the server may notify of completion as
follows:

-------- (1) Queue. Declare T
queue = queuel

-------- (2) Queue. Decl are T
queue = queue2

Ge=oo==c== Sessi on. Conpl eted ~ -----
conmands = (1)

-------- (3) Queue. Declare T
queue = queue3

Ge=oo==c== Sessi on. Conpl eted ~ -----
commands = (1 to 3)

Note that the receiver of the commands will send the entire set of commands which have completed and for which it
has not been informed by the sender of the commands that the completion is known. Since thisis sent as arange (e.g.
1-3) rather than a discrete set, thisis not asinefficient asit may at first appear.

3.2.4. Replay and Recovery

In general an AMQP system should be expected to cope with temporary network failures, or the failure of a single
node in a cluster of AMQP servers. In order to survive such failures, the session must be used to replay commands

whose receipt was in doubt at the point of failure. The session layer provides the tools necessary to identify the set of
commands in-doubt, and to replay them without the risk of accidental duplicate delivery.

3.3. Transport requirements

The session layer lies on top of the underlying network mapping. The session requires that the network mapping
provide the following

 ordered delivery, asin no overtaking
e atomic transmission of control and data units

 detection of network failure

3.4. Commands and Controls

There are two distinct data units transferred in AMQP: commands and controls. Commands are sent on sessions.
Commands are assigned a name and reliably delivered by the session. Controls, on the other hand, are not reliably
delivered and need not be on a session, they may be considered to be communicating about a session.

3.4.1. Commands

Commands consist of a(cl ass- code,conmand- code) pair, asessi on. header , astructured set of arguments
and possibly a payload consisting of an optional sequence of message headers and an opague message body. The
command also has assigned to it a unique name as explained above.

27

Sessions

3.4.1.1. The sync bit

The sessi on. header isastructure passed on al commands. It provides a uniform mechanism for the sender of
the command to request immediate natification of the completion of the command. When this "sync-hit" is set, the
receiver of the command is under an obligation to send out a completion notification as soon as it becomes possible.

3.4.1.2. Results

Some commands, such as queries, return a "result". Such commands will normally be executed synchronously. A
specia "generic' Execut i on. Resul t command is used to return results. It is correlated to the command which
gave rise to the result by referencing the command-id of that command. Such a result must be generated before the
command which gives rise to it has been identified as "completed”. If acommand is specified as generating a resullt,
it MUST aways generate aresult - results are never optional.

3.4.1.3. Exceptions
AMOQP uses exceptions to handle errors. That is:

1. Any operational error (e.g. message queue not found or insufficient access rights) results in an exception which
will destroy session state.

2. Any structural error (e.g. invalid argument or bad sequence of commands) that can be expected to recur if the same
series of set data were replayed between the peers also results in an exception which will destroy session state.

3. Error conditions that cannot be ascribed to a single session, or which may be related to a transient error state on
one of the peers, are dealt with by closing the connection. Closing the connection may not destroy session state
(session state will only be lost at the point where the timeout for the disconnected lifetime of the session expires).

Where a failure has occurred within the model layer, the reason for the failure will be conveyed using the
Execut i on. Except i on command. This command informs the recipient of the reason for failure (using a three
digit error code), the command id of the command which caused the error (if applicable) along with other potential
useful debugging information.

Immediately after the Execut i on. Except i on has been sent, the sending peer will destroy all session layer state
held for this session, issueasessi on. request - ti meout (0) , andfinally issueasessi on. det ach.

3.4.2. Controls

In contrast to commands, controls are unreliable with respect to sessions. This means that the session layer itself does
not identify or attempt to replay controlsin the face of network outage. There is no notification of the completion of
controls. Because of their inherent unreliability, session controls are designed to be idempotent (i.e. repeated issuing
of the same control has the same affect as one successful issuance).

While commands must travel in a strictly ordered sequence, controls may interleave or interrupt this stream. In
particular a control may be sent half way through a single large command. This allows urgent controls to be sent
without being held up by application data transfer.

Controls are used to manage session state.
3.5. Session Lifecycle
A session may bein either an attached or detached state. While detached the two peers may hold on to state information

about the session. If re-attachment of the session is attempted, the two peers must establish which commands must be
replayed to establish a consistent view of the session between the two peers. To avoid holding on to unnecessary state

28

Sessions

while the session is detached, and to remove the necessity for the replaying of commands at the time of attachment,
the peers may attempt to cleanly close the session, by establishing a consistent view before the detach leaving no in-
doubt state to be rectified on re-attachement.

3.5.1. Attachment

The client attempts to attach to the session by sending a session. attach control. If this succeeds a
sessi on. at t ached control will be sent in the other direction.

The successful attachment to a session provides a guarantee of exclusive access to the session from a given peer, this
isimportant since sequence numbers must originate from a single source.

3.5.2. Session layer state

As aluded to previoudly, a session which is attached, or which has been detached in a "non-clean” way may have
associated with it some amount of session state:

1. Alogical list of identified (numbered) commands recording all commands issued by this peer and for which this
peer has not yet received confirmation of receipt. Thislist is the set of commands that would potentially have to
be replayed if the connection was lost at this point in time (these commands might all still be "on the wire").

2. A set of command identifiers representing commands sent to this peer which have been confirmed or completed
by this peer; but for which this peer has not yet received notification that its partner knows the command to be
complete. This set forms the idempotence barrier. If, on re-attachment a command with one of these identifiersis
sent, it will be ignored as this peer has already received it.

3. Command segquence counters, storing the next sequence number to assign to outgoing commands; and the sequence
number to associate to the next incoming command (since sequence numbers are implicit rather than explicitly
sent; both peers need to keep track of both the last outgoing and incoming commands).

3.5.3. Reliability

Session layer reliability is obtained by the retention of the session state while the session is detached (either through
an explicit detach or through failure of the underlying transport). The amount of time that the session state is retained
while detached is governed by a timeout value that can be set while the session is attached. If the timeout value is
0, then the session state is lost as soon as the session becomes detached. For simple implementations of AMQP it is
perfectly acceptable only to allow atimeout value of 0 on al sessions. This obviously removes the ability to recover
from network failure by using sessions.

3.5.4. Replay

When asession isre-attached to, the two peers negotiate to establish which commandsthat have been sent were actually
received by their partners. It is possible that some subset of the commands that they have previously sent were "on
the wire" when the session was detached. In this case, these commands need to be replayed to ensure exactly once
delivery of commands to the upper layers of the protocol.

While theoretically commands can be replayed at any time while they are till in the idempotence barrier of the peer's
partner there is normally no reason to replay commands while AMQP is running over a"reliable" transport such as
TCP or SCTP. The only point at which it becomes necessary to replay commands is when re-attaching to a session
after an unclean detachment of a session (see Section 3.6.2, “ Attempting to re-attach to an existing session”).

29

Sessions

3.6. Using Session Controls

The full set of session controlsis documented in the section Class: session in Part |1 of this document. However it is
useful to demonstrate how certain common activities are achieved using the session controls.

3.6.1. Attaching to a "new" session

The following interaction details how aclient and server establish an attachment to a"new" session.

First the client must attempt to attach to the session

———————— Sessi on. Att ach(nane: <session name>, force: false) -------------->

<------- Sessi on. Att ached(nane: <session name>) 0 o---------------

The next action each peer must takeisto verify the state which its peer holdsabout the session. It doesthisby requesting
(viathe flush control) the peer to send:

1. theidentifiers of any commands which it is expecting (if the peer has any state at all, thiswill include the id of
the next command to be sent),

2. theidentifiers of commands which have been sent to the peer, and which it has confirmed the receipt of,
3. theidentifiers of commands which have been sent to the peer, and which the peer has completed execution of, but

for which the peer has not yet received asignal that the completion is acknowledged

If any of theselistsis not empty, then the peer is holding some state about the session, and therefore it is not "new".
The client should thus abort the connection (since it is expecting to create a new session and does not know how to
deal with the existing session state it has discovered exists).

Thefollowing interaction shows how the stateis discovered. Note thisinteraction occursin both directions. The flush
control should be the first control sent by each peer on the session.

———————— Sessi on. Fl ush(expected: true, confirned: true, R R
conpl eted: true)

<------- Sessi on. Expect ed(conmands: <expect ed- commands>, @ ---------------
fragments: <expected-fragnents>)

<------- Sessi on. Confi rmed(comrands: <confirmed-commands>, — ---------------
fragments: <confirmed-fragnents>)

<------- Sessi on. Conpl et ed(comrands: <conpl et ed- commands>, ---------------
timely-reply: true)

At this point if any of the received <expected-commands>, <confirmed-commands>, or <completed-commands> are
not empty, then the session name we are using is known to our peer, and instead of creating a new session we are
unwittingly reattaching to an existing session.

Presuming that all three command sets are empty the client can proceed to request a timeout value for the session:;

30

Sessions

Sessi on. Request - Ti neout (ti meout :

Sessi on. Ti neout (ti nmeout :

<desi red-ti neout >)

<ti meout >)

At this point both peers can also inform their partner of the identifier at which they wish to begin identifying their
command sequence:

Sessi on. Conmand- Poi nt (conmand-i d: O,

command- of f set: 0)
S Sessi on. Command- Poi nt (conmand-id: 0, ---------------
command- of f set: 0)

From this point on the session is established, and commands can be sent in either direction.

3.6.2. Attempting to re-attach to an existing session

The process for attempting to re-attach to a session starts similarly to the to that of attaching to a new session (the
only difference is that we try to force the attachment in case an old attachment is still believed to be active by the
receiving peer):

-------- Sessi on. Attach(nane: <session nanme>, force: true)

Sessi on. Att ached(nane: <sessi on name>)

Followed by the symmetric request for state information (again this request occurs in both directions, although only
one direction is shown here):

true, confirned:
true)

Sessi on. Fl ush(expect ed: true,

conpl et ed:
Sessi on. Expect ed(commands: <expect ed- commands>, =~ ---------------
fragment s:

<expect ed- conmands>,
<expect ed- f ragnment s>)
<confirned- conmmands>, ~ ---------------
<confi r med-f ragnment s>)

Sessi on. Confi r med(comrands:

fragment s:
Sessi on. Conpl et ed(commands: <conpl et ed- commands>, ---------------
tinmely-reply:

<conpl et ed- conmmands>,
true)

Now, the attaching peer has a set of "pending” commands which at the time the session was previously detached, it
knew it has sent, but for which it hadn't yet received confirmation of completion. For each such command it can check
to seeif the command is in the "confirmed" set sent by its peer. If the command isin the confirmed set then it can be
removed from the "pending" list. The remaining commands in the "pending" list will have to be replayed.

Based on this information the peer can now set the command-point to the beginning of the replay list, then replay
the commands.

31

Sessions

———————— Sessi on. Command- Poi nt (conmand-i d: <N>, B R
command- of f set: <n>)

<------- Sessi on. Command- Poi nt (command-id: <M, — ---------------
conmand- of f set: <mnp)

————————— <Repl ayed Conmands> O L

<-------- <Repl ayed Conmands> ---------------

Following this it can then process the confirmed and completed sets in the same way it would during normal session
activity (including the sending of session.known-completed controls).

3.6.3. Detaching cleanly

If detaching from a session is planned, it is polite for both peers to minimize the amount of state that the other has
to retain. Thus the peers should first attempt to quiesce the session before issuing the detach. A quiesce is performed
in the following manner:

First the peer sends an execut i on. sync command to force the sending of outstanding sessi on. conpl et ed
controls once al current commands have been executed.

-------- Executi on. Sync R

<------- Sessi on. Conpl et ed(commands: {n...n}) ---------------

Next the peer processes the sessi on. conpl et eds and sends the sessi on. known- conpl et ed responses.
Oncethe peer is sure that its partner hasreceived all the known- conpl et ed controls, it can be sure that the partner
will have minimal state to hold on to. To ascertain that the known- conpl et ed controls have been received, it can
repeatedly issue sessi on. f | ush controls until the returned sessi on. conpl et ed setis empty.

———————— Sessi on. Known- Conpl et ed(commands: {n..n} B R
/* Now | oop checking through the follow ng unti
the Session. Conpl eted set is enpty */
———————— Sessi on. Fl ush(conpl eted: true) O
<------- Sessi on. Conpl et ed(commands: {i...j}) aeeee----------

If the process of detaching istruly clean, then it will have to have been agreed at a higher level - at the AMQP model
layer both peers will have been put into a state where no new commands will spontaneously be generated (e.g. all
subscriptions will have been canceled). Both peers will perform this dialog simultaneously, and can work out when

32

Sessions

they have arrived at a state where neither have any commands in doubt. At that point a detach can be carried out by
either party, and the peers will have minimal (or if they choose, zero) state to maintain.

3.6.4. Closing

To close a session, you heed to ensure that the peer you are communicating with retains no state. The simplest way
to do thisisto request that the session timeout be set to O, wait for confirmation of this, and then detach. To cleanly
close, the session should be quiesce before detaching. If there is outstanding session state when the session is closed,
the session is effectively being aborted and this will most likely result in an error at the higher layers.

33

Part Il. Specification

Table of Contents

R I =0 o PP PTPPTPPN 40
I N N7 N o A N LU 0 o= 40
e (0 (0 oo I o 1= o L= PP 40
4.3, Version NEGOUIGLIONuuniiiiitiee ettt et ettt e et e et et e e e e bt e e e enaa s 40
N 1 111 0o SO PTT U PR 41

4.4.1. Assemblies, Segments, and FIamMeScouuiiiiiiii e 41
4.4.2. Channels @nd TraCKSiiuiiuiiiiiii et ettt e et e et eneeaens 42
A.4.3. Frame FOIMEL . ..ot e ettt e et et e e et et eanaas 43
ST O 1 T 44

LI o)1 207z I A\ o) 7= £ o o 45
L B Lo Tt = o U= 45
I Y/ o= S PP PPT PP 46
R IS 1 (o £ TP 47
LB B Lo 1 0= PP 50

LT 3t I = 010 0 PPN 51
R 000 01 = o | £ T PPN 51
LN ST O = LS PPN 52
L T T = (o =SSP 52
LI A Oo 11 (o £ PP 53
5.7. 0 RESPONSES ...ttt ettt ettt ettt et ea e 54
LS T 00 4111 0= 1o PP 54
L T B = (=== | £ PPN 55
5.8.2. EXCEPLIONS ...t ettt ettt e e e eanas 55
5.0, SEOMIENES ...ttt et 56
5.9.1. HEBOEN SEOIMENL ...ttt ettt ettt e ettt e et et e e e e et e e e e ert e e eentaeaees 56
5.9.2. BOOY SEOMENTeiiitii ettt ettt e et e et e e et e b e et et e e e e e e e ena s 57

(ST 01115 = |1 OO 58

ALY L= T PP PP 59
7.1 FIXEA WIGEN TYPES ...ttt e e 59

0 05 O o 11 1 P 59
A T 1 ¢ < TP 60
0 R T U 11 o1t T 61
A 0 o’ 1 - T 62
A S oo == o PP 63
A 0L T o 1 0 1 1 PP 64
28 O 1 5 T 65
8 < T U 11 o1 1 PP 66
A S T o 11 1 7 PP 67
8 05 O TR 1 12 7 PP 68
8 00 O U 1 | 2 69
20 0 2 o - N 70
8 G T =T 1 1 2 71
A R < o 11 o 1= o PP PP PPI 72
8 05 L TR o1 a7 73
8 00 TR T 1 72 PP 74
8 00 A U 11 (7 75
20 05 ST (o o= PSPPSR 76
A R o = = 111 1L PN 77
A O R o1 022 < S P 78
8 0 T 15 o TP 79
O o 14223 TP 80

35

Specification

28 TS T o 11 TSP 8l

8 . o1 0 2 PPN 82

28 TS T o1 O TSP 83
A T T o (< o ST 84
2 T A o1 47 RPRPT 85
A o 1< oS TN 86
8 S IR o o R 87
2% G (O T o ST 88

7.2. Variable WIitth Ty PES . coe e 90
A Y o1 o< PR 90
A= < T - 1] [T 91
A T 1 < TR 92
s g T 1 P 93
S T o1 0 X TSP 94
A T (g LT = 1 o PSRN 95
A = | 1 TSR 96
A = (g LT L TSP 97
e B o) (= = 1o 98
T.2.00., SBOUEICE-SEL ..ttt ittt et e e e e e e e e e e 99
A N TV 1 K v PSP 100
5 7 11 o 101
28 1 T = PR 102
O T - Y PRSPPI 103

A LT 1 Tox 2 PR 104

AT Y = 0 To = o YA Y o= 106
LI L0 4= 1 PR 107
e IS =000 o1 < PP 107
A 1 - v TR 107
e TR T 1 G = - YO PPPRUPTPRR 108
L 00 g1 {0 IO =S ST 110
Lo I o0 0101 ox ([0 o KPR 110
9.1.1. CONNECHION.CIOSE-COUR ...vuiiiniiiiit ettt ettt et e e e e e e e et e et e et eeaaaas 111
9.1.2. coNNECioN.amgpP-hOSE-UrT ... oo e e 112
9.1.3. CONNECLION.AMOP-NOSE-GITAY ...u.iiiieii e e e e e e e e e eaa s 113

Lo I oo a0 1= ox o g T o AP 114
9.1.5, CONNECHION.SLAI-0K ...iviiitiiteiitee et e e ettt e e et e e e e s e et e et e et e e e eraeeanns 116
O.1.6. CONNECLION.SECUIE ...uuivtireiiteiteeet et e et e e et e et e et e et e et e et e et e et e e e e e s e et e et e et e st esnernns 117
9.1.7. CONNECHION.SECUINE 0K vvueiteitiest ettt et e et et e e et e et e et e et e e st e et e st e et eeneeensesnaesneesnaes 118
0.1.8. CONNECLIONLUNE ...uiiiiiiiiii et e e e e et ettt e e e et e et e et e et e et e eneens 119
9.1.9. CONNECIONEUNE-OK ..uiiviiitiii ittt et e e e e e e e e e e et e et e et e e e e b eanes 120

1S 50 0 0 B o9 o o e o= o P 122
9.1.11. CONNECLION.OPEN-0K ..uuiiiiciiii et e e e e e e e et e et e et e e aaeeaanas 123
9.1.12. CONNECHION.FEAITECE ..ieviiitiii ittt e e e e et e et e ebeeanes 124
9.1.13. CONNECLION.NEAMIIEAEciveiiiiii e 125
O.1.14. CONNECLION.CIOSE ...viiitiiiiiiie ettt e e e et e e et e et e et e et eaaeeanns 126
9.1.15. CONNECEION.CIOSE-0K ..uiviiiteit et eii et ettt et e et e et e e e et e et e et e et e e e e s e e raeeanes 127

e s o= o) o [T 129
e 2 I = (0 1= 130
0.2.2, SESSION.NBATEN ..euiiiiiiiii e e 130
9.2.3. SesSIoN.COMMANG-fragMENTvviiiii e e e e e et e e e eanas 131
0.2.4, SESSION.NAIMIE ...etiiitiieieit ettt ettt et e e et e e e et e et e e et e e e e e e et e et et et e et a e et aaaaas 132
9.2.5, SESSION.AEIACN-COURivuiiiiit et e e e et e et e e eens 133
9.2.6. SESSION.COMIMANGSuiiuiieiiteit et ettt et e e et et e et e et e et e s e e e e et e et e et e st et ereereereeans 134
9.2.7. SesSI0N.COMMANG-fIAgMENTS .ovvuiii i e e e e e e e e et e et e et e e aaneeeeas 135

36

Specification

0.2.8. SESSION.AACH 1oiiiiii it aanan 136
9.2.9. SESHON.ALACNEH ...iiiiii i 137
9.2.10. SESSIONAEIACKHiiiiiiii e 138
9.2.11. SESSIONAEACNEAuiiiiiii i 139
9.2.12. SESSION.FEQUESE-TIMEOULiiitiieii e ee e e e e e e e e e e e e e e e st e e e ae e et e e e et e e anneeaens 140
9.2.13. SESSIONLIMEOUL .iivuieeiiiis ettt ettt e et e e et e e e e e e e e et e e e et s e e e et e e e eatn e eeeaannes 141
9.2.14. SeSSION.COMMANG-POINT ...iuuuiiii it ee e e e e e e e e e e e e e e e et e e eateeaaaeeetnaeeanaaees 142
9.2.15. SESSION.EXPECIEAiiiiiiiiieii et e e et e e e e e e e e e e e r e aan 143
9.2.16. SESSION.CONFITMEA .iiiiiieeeii ettt e et e e et e e e e e e e e eaa e e e eaan e eeennns 144
LS T2 S =S Lo Moo 1] o) = (o 145
9.2.18. sesSioN.KNOWN-COMPIELEAoviiiii i e e e e e e e eaaes 146
9.2.19. SESSION.FIUSN .o 147
LS I O = o] o - o P 148
O o 4100 o O == PR PR 150
05 == o 1 1o P 150
10.1.1. EXECULION.EITON-COUR ...uiiieiinieeiiii ettt e et e e et e e et e e ettt a e e et e e e eaa e e e e ann e eeenenns 150
O 0 B = = W o g Y 0 RN 151
10.1.3. EXECULIONFESUIT ...t e et s e e et r e e e et neeeaaa e eeeanen 152
00 0 = oW Lo g = (= oo o 153
T 1101552 o = PP PP 155
02 T (1 =~ PPN 157
10.2.2. MeSSage.deliVENY-PrOPEtIESciuuieiiii e e e e e e e e e e e e e e e e eaes 158
10.2.3. MesSage.fragment-ProPErtIES ...o.uuiiii e e 160
10.2.4. MESSAGE.IEPIY-T0 oeutiiii it aaa 161
10.2.5. MESSAgE.MESSAPE-PrOPEIMIES ..uuiiiiiiiiiie e e e e e et e e e e e e e e e et e e et e e et e e e eeaens 162
10.2.6. MESSAQE.AESIINALION ...u.iiiiiiii e e e e e e e e e e e e e e e aaa 164
10.2.7. MESSAGE.ACCEPE-MOUE ...ovuiiii i e e e e e e e e et e e et e e e eea s 165
10.2.8. MESSAGE.ACUITE-MNOUE . ..uiiiiiiieii e e e e e e et e e e e e e e e et e e et e et e e e et e e eaneeeens 166
10.2.9. MESSAGE.IEJECE-COUR ...ivuiiiiiiiiii e it e et et et e et e e e e et e e et e e et e e et eean e eatn e e eanaerrnes 167
O 0t O T 441= 5= o [=S U = o 168
10.2.11. Message.deliVEry-MOEc.uiiiiiiiiiii e 169
10.2.12. Message.deliVEry-Priorityccee i 170
10.2.13. MESSAQE.FIOW-MOOEcouiiiiiiciie e e e e aaa 171
10.2.14. MeSSAgE.Cradit-UNITciiiiiiiiieiii e e e e e e e e e e e e e e e e e e et e e et e e eanaees 172
10.2.15. MESSAQEATANSIEr ... 173
10.2.16. MESSAGE.ACCEPE 1.uituiiitttietre ettt e e e e e e e e e 175
O I 4415 o[== S 176
O e T 441c S o [= == S 177
10.2.19. MESSAYE.ACHUITE +.vueeerneetneeeieeeteeetee et aeetteestnee st eetn e eaneestaastnaestnaessneranneastnaees 178
10.2.20. MESSAGE.MESUMIE ..eutuiene ittt te it et eneen 179
10.2.21. MeSSAgE.SUDSCIIDEiii i 180
O A 411= 5 o (X o= 4 o= PPN 182
10.2.23. Message.Set-TlOW-MOEccoviiii e 183
10.2.24. MESSAEFIOW ..o e 184
10.2.25. MESSAQE.FIUSN .eeiie i 185
10.2.26. MESSAGE.SIOPD +utututinitt ettt 186
0 T o PP 188
0 25 R (1 =~ S SPPPN 188
O B Y= 1= PP 188
0 e T oo 41 01 PSPPI 189
L0 'l 0] 11 o 7= o! PR 190
0 o [G PP 192
0 O L =~ PPN 193
L0 e |01 = 3 (=== U PP 193

37

Specification

10.6.

10.7.

10.8.

L0 e Ao 10105 (Lo SO 194
O o | Y= = - LU = 195
O ST 0 ot = < ot PSPPI 196
L0 G T 0 |01 - PP 197
0 B o |01 oo PP 199
10.4.8. AEX.COMIMUL oottt e e e e et s e e e et s e e e et e e e e et e e e e et e e e e st e eeeaennees 201
O o101 o = PP 203
10.4.10. OEX.QEE-LIMEOUL ..vuiieeiiii ettt e e et e et e e e e e et e e ettt e e e e e atreeeeatn s e eeestn s eeeentnaaeaes 204
00 Bt 0 o o = o= = S 205
O o 0 o0 Y= PR 207
10.4.13. AEXFOHDACK .o.ieeeii e 208
O e ot = B 11 | PO 210
oo =T P 212
030 (1 =~ PSP 212
10.5.2. BXChANGEINAIME . .iitiiiiiiii e e e e e e e e e e e et e e et e et e e et e e et e e e eeaneenen 213
10.5.3. €XChaNQE.AECIAIEivvniii i e e e e 214
10.5.4. eXChanQeAEIEIEccveiii e 217
O (e 0= 0T (=0 (U= P 218
10.5.6. €XChange.bINGiiiiii e 219
10.5.7. eXChangeuUNDINGcouniiiiiiii e e e e e aa 222
10.5.8. eXChange.boUNGiiiiiii e e 223
0 01 PP 226
030 (1 =~ PSPPI 226
JO.6.2. QUEBUEB.NEAITIE ...iuiiiiiiiii ittt et et e e e e e e e e e e e e e e e et e e et e e et e e e e e ans 226
10.6.3. QUEUE.ECIAIEuiiiiiiiii e e e e e e e e e e a s 227
10.6.4. QUEUEEIEIE ...ceviiiii it et e e e e a s 230
OGN0 (U1 B =N o U o = PP 231
O G o (U1 =X (5 o PP 232
LSS 234
0 O (1 =~ USSP 235
O A T = =T o] o= =S PP 235
L0 A (1= (= (8 g o oTo o L= PP 236
O B T =X (oL 237
O T 1= [0S oGP 238
1O.7.6. FIlECONSUME ...iiiiii ittt e et e e et e e e e ettt e e e eatreeeettneeeestn s eeeartnaaeeees 239
10.7.7. FIECONSUME-OK ...eiieiiie e ettt ettt e et e e e et s e e e st a e e e et e e e eana e eeenees 241
FO.7.8. FIlECANCE ...iieiiii e e 242
O e T 1= o= o R 243
0 00 O T 1= 0T o= 1 o 244
O 1] 1R = o PRSPPI 245
L0 2 1] 1= o0 o] T o PP 246
0 R 1] 1= = (g o I PP 248
LO.7.14. fIlEEliVEr e aaaa 249
FO.7.15. FIlEACK .eiiieeiii et 250
L0 G T 1] 1= == o TP 251
(=70 PP 253
O L =~ PSP 254
10.8.2. Sream.StrEaM-PrOPEITIESiieiieiiieii e e e e e e e e e e e e s e e e e e et e e et e e eaaeeeaneees 254
10.8.3. StrEAM.FEIUMM-COUE ...uniiiiiiiieeeiii et e et e e e e e et e e e e et e e e et e e e e et e e eeatnnes 255
R (=2 10 0 o [0 S PPN 256
O == Mo (01 o 257
10.8.6. SIrEAM.CONSUMEceiitieiteet ettt et et et et e e e e e et e et e et e ea e e e e e e e eaeen e enreenaeeneen 258
10.8.7. StrEAM.CONSUME-OK ueieeiiietiiii s eeetie e et et e e e et e e e et s e e e et s e e e et e e e e et e e eeetaaeeeannnans 260
10.8.8. SIrEAMLCANCEL ...euiiiiiiii e e et e e e et et r e aaann 261

38

Specification

10.8.9. Stream.PUBIiSN ... e 262

JO.8.10. SEEAMLIELUIMN .eeeeeee et e et et ettt e et e et e e e e e e e e enr e e s e e e et e et e eneenaeenns 264

10.8.11. StrEaMLAEIVEr ..o 265

O I 0= 1Y T L= PP 267
T (7= o 1= P 267
11.1.1. Mandatory EXChange TYPESuuiiiiieiiiei e e e e e e et e e e e e e e e e et e e et e e e e eaaeees 267

11.1.2. Optional EXChaNgE TYPES ..vuuiieieeiiiei e e et e e et e e e e e e e e e e e st e e e eaneees 268

11.1.3. SyStEM EXCRaNGESivviiii et e 270

11.1.4. Implementation-defined EXChange TYPESu.cviviiii e e e e e e 271

T (e 1 7= 14 o =T\ o 1 T 271

D @ 1= = PP 271
0t o 101 BT 1 1 o PPN 271

2 = o) (ool I =01 PPN 272
12.1. Augmented BINF RUIESiiiiiieiiii et e e et e e e et a e e e et e e e eaees 272

i 1111 = PP TUPR PPN 272

39

4. Transport

4.1. IANA Port Number
The standard AMQP port number has been assigned by IANA as 5672 for TCP, UDP and SCTP.

There is currently no UDP mapping defined for AMQP. The UDP port number is reserved for future transport
mappings.

4.2. Protocol Header

Prior to sending any frames on a connection, each peer MUST start by sending a protocol header that indicates the
protocol version used on the connection. !

Thisisan 8-octet sequence:

4 OCTETS 1 OCTET 1 OCTET 1 OCTET 1 OCTET
focooc==oc foocooo==o focooo==oc foocooo==o foocooo==o +
| "AMQP* | <class | instance | nmjor | mnor |
focooc==oc foocooo==o focooo==oc foocooo==o foocooo==o +

The protocol header consists of the upper case letters"AMQP" followed by:
1. Theprotocol class, whichis 1 for al AMQP protocols.

2. The protocol instance, whichis:

Instance Value
AMQP over TCP/IP 1
AMQP over SCTP/IP 2

3. Themgjor version of the protocol, used in accordance with Part 11, “ Specification”.

4. The minor version of the protocol, used in accordance with Part I1, “ Specification”.

4.3. Version Negotiation

The protocol negotiation model is compatible with 1) existing protocols such as HTTP that initiate a connection with
aconstant text string, and 2) firewalls that sniff the start of a protocol in order to decide what rulesto apply.

An AMQP client and server agree on a protocol and version as follows:

» Whenthe client opensanew socket connection to an AMQP server, it MUST send aprotocol header with the client's
preferred protocol version.

« If the requested protocol version is supported, the server MUST send its own protocol header with the requested
version to the socket, and then implement the protocol accordingly.

« If therequested protocol versionisnot supported, the server MUST send aprotocol header with a supported protocol
version and then close the socket.

! Note that for protocol versions prior to 0-10 the protocol header was sent by the client only. An implementation that wishes to support these
versionsin addition to 0-10 should respond in a manner consistent with the requested version.

40

Transport

« If theserver can't parsethe protocol header, the server MUST send avalid protocol header with a supported protocol
version and then close the socket.

Based on this behavior a client can discover which protocol and versions a server supports:

« AnAMQPclient MAY detect the server protocol version by attempting to connect with its highest supported version
and reconnecting with alower version received back from the server.

* An AMQP server MUST accept the AMQP protocol as defined by class = 1, instance = 1.

Examples:

Client sends: Server responds: Comrent :

AMQP%I1. 1. 0. 10 AMQP%lI1. 1. 0. 10<start connecti on> Server accepts connection for:
Class: 1(AMP), Instance: 1(TCP), Vers:0-10

AMQPY%2. 0. 1. 1 AMQP%lI1. 1. 0. 10<cl ose connecti on> Server rejects connection for:
Class:2(?), Instance:0(?), Vers:1-1
Server responds it supports:
AMQP, TCP, Vers:O0-10

HTTP AMQP%I1. 1. 0. 10<cl ose connecti on> Server rejects connection for: HITP
Server responds it supports:
AMQP, TCP, Vers:O0-10

Please note that the above examples use the literal notation defined in RFC 2234 for non a phanumeric values.

4.4. Framing

4.4.1. Assemblies, Segments, and Frames

An assembly is the largest structural unit directly represented by the AMQP framing system. AMQP encodes each
semantic unit (control or command) into exactly one assembly. Each assembly is divided into one or more segments.
AMQP uses segments to represent distinct syntactic units (e.g. header vs body) within a given semantic unit. Finaly,
each segment is divided into one or more frames. A frame is the atomic unit of transmission within AMQP.

Assemblies and segments have no fixed size limit. Frames are alwayslimited by the maximum frame size permitted by
the transport mapping. In addition, for a given connection, frame sizes are also limited by a per connection maximum
negotiated between the endpoints.

For thewirelevel encoding, thethree-level structureisflattened into asingle uniform frame representation. In addition
to apayload, each frame carries an additional four flags. Two flags mark the position of the payl oad within the segment,
and the other two mark the position of the segment within the assembly.

flag meaning

first-segment The frameis part of the first segment in the assembly.
|ast-segment The frame is part of the last segment in the assembly.
first-frame The frame isthefirst in the segment.

last-frame The frame isthelast in the segment.

Based on these four flags, the segment and assembly boundaries, aswell asthe full payload can be reconstructed from
a seguence of frames as depicted below.

41

Transport

dom e e e e e e ma oo e m e e e e e e mmeeeeeeecccccaaeaa +
| A0 | Al I A2 I
[----l--------- LaREREEEEE [--------- LaREREEEEE tARREEEEEEEEEEEEE I
| SO | ST | s2 | s3 | sS4 | S5 |
R R e e el e Al L S E bl R e Ho--- - I
| FO| FL | F2 | F3 | F4 | F5 | F6 | F7 | F8 | F9 | F10 | F11 |
S e T e R +-- - - - +

A<n> the nth assembly

S<n> the nth segment

F<n> the nth frame

The length of a segment is determined by the accumulated payload length of all the contained frames. Likewise the
length of an assembly is determined from the accumulated length of the contained segments. Note that the size of the
frame header itself must be subtracted from the frame size in order to correctly calculate the payload length.

4.4.2. Channels and Tracks

AMQP framing permits multiple independent dialogs to share a single frame transport (connection). Each frame
includes a number that uniquely identifies the dialog to which a frame belongs. This number divides a single frame
transport into distinct channels. Thereisno order preserved between frames sent on different channels. Even when the
frame transport provides atotal ordering, an implementation MAY service frames on distinct channelsin any desired
order.

The figure below depicts frames from two separate channels traveling along on a single frame transport divided into
many channels:;

oo + oo +
F1, F2 -->| CHO |----+ +---> CHO |--> F1, F2
oo + | | oo +
F1, F2 -->| CHL |----+ +--->] CHL |--> F1, F2
oo + | | oo +
--> CH2 [----+ F1-0, F1-1, F2-0, F2-1 +---> CH2 |-->
oo + | R + | oo +
--> CH8 |----+----- >| Frane Transport |------ +---> CH3 |-->
oo + | R + | oo +
-->| CH4 | ----+ +---> CH4 |-->
oo + | | oo +
-->| CH5 |----+ +---> CH5 |-->
oo + | | oo +
--> CH6 |----+ +--->| CH6 |-->
oo + oo +
F<n>: The <n>th frame on a channel
F<n-n»: The <n>th frame from channel <n®

Within each channel there is a further division of frames by track. Like channels within the frame transport, tracks
permit multiple concurrent dialogs within asingle channel. However, unlike channel multiplexing, the order of frames
within a channel is retained regardless of the track number. An implementation MUST service frames on distinct
tracks within a single channel according to the total ordering provided by the channel. Together, the (channel, track)
pair provides the sequencing used to reconstruct assembly payloads from the fragments transmitted on a given frame
transport.

42

Transport

The AMQP frame format permits up to 64K channels, and up to 16 tracks. The specification only definestwo of the 16
tracks. The remaining tracks are reserved. AMQP channels provide the frame transport for sessions. AMQP defines
two tracks within a session to distinguish commands from controls. Controls are carried on track zero, and commands
are carried on track one. This permits controls to be sent in-between consecutive frames of a single command. This
prevents transmission of large multi-frame commands from blocking the control dialog between the communication
endpoints. In many respects this is an ordinary multiplexing of a channel into two tracks, however because frames
and the constructed assemblies MUST be processed in the order defined by the channel, it is possible to define the
semantics of controls to operate with respect to awell-defined point in the command track.

ecccoo=== + eccc===== +
Control -->| Track O |----+ AT T +--->| Track 0 |--> Control
L T --->| Channel |---]| L T
Command -->| Track 1 |----+ Hooo-o---- + +--->| Track 1 |--> Command
ecccoo=== + eccc===== +

Channels and tracks provide full-duplex communication. Where two way dialogs are specified, the defined responses,
unless otherwise specified, are carried on the same channel and track as the initiating requests.

* An AMQP peer MUST permit communication on channel 0 for any established connection. This channel always
exists and can never be negotiated away.

* An AMQP peer SHOULD support multiple channels. The maximum number of channelsis defined at connection
negotiation, and apeer MAY negotiate thisdown to 1.

 Each peer SHOULD halance thetraffic on all open channelsin afair fashion. This balancing can be done on a per-
frame basis, or on the basis of amount of traffic per channel. A peer SHOULD NOT allow one very busy channel
to starve the progress of aless busy channel.

4.4.3. Frame Format

All frames consist of a 12 octet header, and a payload of variable size:

o mmmeaao oo mmmeaa - om e e e eemeaaaaaaa +
0 | vv0O BEbe | type | si ze
o mmmeaao oo mmmeaa - om e e e eemeaaaaaaa +
4 | 0000 0000 | 0000 track | channel
o mmmeaao oo mmmeaa - o mmmeaao o mmmeaao +
8 | 0000 0000 | 0000 0000 | 0000 0000 | 0000 0000 |
o mmmeaao oo mmmeaa - o mmmeaao o mmmeaao +
12 | |
) payl oad
si ze-4
o m e e e e e e eemeeeememeeccee-aaaa-- +
Field I dentifier Description
vV frame-format-version Set to 00 for this framing format.
0 reserved All reserved bits MUST be 0.
first-segment Set to 1 for the first (or only) segment of an assembly, O
otherwise.

43

Transport

Field I dentifier Description

E last-segment Set to 1 for the last (or only) segment of an assembly, O
otherwise.

b first-frame Set to 1 for the first (or only) frame of a segment, O
otherwise.

e last-frame Set to 1 for the last (or only) frame of a segment, O
otherwise.

type segment-type Indicates the format and purpose of a segment.

size frame-size Thetotal frame size. Thisincludesthe frame header. If the
size < 12, the frame is malformed.

track track-number The track to which the frame belongs.

channel channel-number The channel to which the frame belongs.

4.5. SCTP

SCTP provides additional capabilities beyond TCP. This section describes how AMQP implementations should take
advantage of these.

SCTP manages transmission through individual data items (called "messages' in the SCTP specification), each of
which can be fragmented or bundled, depending on the path MTU size. The specification requires that the protocol
header be sent as a single SCTP message, and then defines a one-to-one mapping between an AMQP frame and an
SCTP message. Thismeansthat the SCTP stack's EOM notification to the SCTP application layer directly corresponds
to the AMQP end-of-frame condition.

SCTP alows for multiple concurrent streams of data on the same association. The data within a stream is delivered
to the application in order, but without respect to data in other streams, so one stream will not block another due to
packet loss. AMQP has a concept of channels, which can benefit from the property of one channel not being able to
block another due to packet loss.

Since SCTP streams are unidirectional, and AMQP channels are bidirectional, the specification maps one AMQP
channel to two SCTP streams, one in each direction. The SCTP stream ID in each direction corresponding to the same
AMQP channel will have the same value (i.e. AMQP channel { X} mapsto two SCTP streams{Y, Y} whereoneis
inbound and oneis outbound). It is always true that a given AMQP channel mapsto asingle set of two SCTP streams.
However, theinverseis not necessarily true — a given set of two SCTP streams could have multiple AMQP channels
mapped to it. (In the degenerate case, where you might have only 2 SCTP streams on the whol e association, it becomes
similar to afull-duplex TCP connection).

To avoid server resource usage handling unsupported protocol versions (common when a protocol is being upgraded
from one version to another), SCTP's Adaptation Layer Indicator should be used to alow for early rejection of
unsupported versions, before an association is established. The server will set its Adaptation Layer Indicator to avalue
assigned by IANA. Thisvalue will correspond to AMQP 0-10.

The SCTP Payload Protocol 1D field will contain a value assigned by IANA to indicate AMQP. This is a generic
AMQP indication, not aversion indicator.

SCTP stream 0 in each direction isused for all communication before framing is set up (i.e. for the SASL negotiation).
After framing is set up, Stream 0 is used for all communication that is defined to happen on AMQP channel 0.

Note

The IANA assigned constants referred to in this section are not yet defined. When available, they will be
included in a future publication of the specification.

5. Formal Notation

AMQP semantics are defined in terms of types, structs, domains, constants, controls, and commands. AMQP formally
defines the semantics of each protocol construct using an XML notation. Each kind of construct is defined with a
similarly named element. These definitions are grouped into related classes of functionality.

Construct | Definition Notation
Type: |aset of vaues with formally defined operations and encoding |[<type name="..." ... > ... </type> |
Struct: | a compound type of named fields [Kstruct name="_.." ... > ... </struct> |
Domain: |arestricted type [<domain name="..." ... > ... </domain> |
Constant: |a constant value [<constant name="..." ... > ... </constant> |
Control: | a one-way instruction [<control name="..." ... > ... </control> |
Command: | an acknowledged instruction [<command name="..." ... > ... </command> |

5.1. Docs and Rules

The semantics of each AMQP construct are formally defined by documentation and rules that appear within the
definition of the given construct. Documentation is expressed with the doc element:

<doc title="..."
type="...">

</ doc>

Attributes of a doc element:
title If present, this attribute contains atitle for the contained documentation.
type Permitted values: grammar, scenario, picture, bnf

If present, this attribute indicates the type of the contained documentation. This primarily serves as a
formatting hint for processing tools.

The doc elements of type grammar use the following notation:

1. 'S'indicates acontrol or command sent from the server to the client

2. 'C!indicates acontrol or command sent from the client to the server

3. "™:'indicates a control or command initiated from either peer

4. 'R:'indicates acontrol or command sent by the partner of the initiating peer
5. [...] meanszero or oneinstance

6. +termor +(...) expression means 'l or more instances

7. *termor *(...) expression means 'zero or more instances.

45

Formal Notation

Rules

Rules are used to formally name a particular aspect of the semantics of a given construct:

<rule nanme="..."
| abel ="...">
<doc ... > ... </doc>

</rul e>

Attributes of arule:
name Thename of therule. Thisisunique within the defining context.

label A sentence fragment containing a short description of the rule.
5.2. Types

Each AMQP type defines aformat for encoding a particular kind of data. Additionally, most AM QP types are assigned
aunique code that functions as a descriminator when more than one type may be encoded in a given position.

AMQPtypesbroadly fall into two categories: fixed-width and variable-width. VVariable-width typesare always prefixed
by a byte count of the encoded size, excluding the bytes required for the byte count itself.

Unless otherwise specified, AMQP uses network byte order for all numeric values.

AMQP types are formally defined with the type element:

<type nane="..."
code="...">
<doc type="bnf">
</ doc>
</type>

Attributes of atype definition:
name The name of the type. Thisis unique among all top-level AMQP constructs.
code Thetype code.

A type code is asingle octet which may hold 256 distinct values. Ranges of types are mapped to specific sizes of data
so that an implementation can easily skip over any data types not natively supported.

Code Category Format

0x00 - OxOF Fixed width. One octet of data.
0x10 - Ox1F Fixed width. Two octets of data.
0x20 - Ox2F Fixed width. Four octets of data.
0x30 - Ox3F Fixed width. Eight octets of data.

46

Formal Notation

Code Category Format

0x40 - Ox4F Fixed width. Sixteen octets of data.

0x50 - Ox5F Fixed width. Thirty-two octets of data.

0x60 - Ox6F Fixed width. Sixty-four octets of data.

0x70 - OX7F Fixed width. One hundred twenty-eight octets of data.
0x80 - Ox8F Variable width. One octet of size, 0-255 octets of data.
0x90 - OX9F Variable width. Two octets of size, 0-65535 octets of data.
OxAO - OXAF Variable width. Four octets of size, 0-4294967295 octets of data.
0xB1 - OxBF Reserved

0xCO - OxCF Fixed width. Five octets of data.

0xDO - OxDF Fixed width. Nine octets of data.

OXEO - OXEF Reserved

OxFO - OxFF Fixed width. Zero octets of data.

The particular type code ranges were chosen with the following rationale in mind:

0 | fix-exp | subt ype
1 0 | var-exp | subt ype
1 1 | fix-odd | subt ype

fix-exp = |l og2(size of fixed width type)
var-exp = |l og2(size of size of variable width type) (Note: 11 is reserved)

fix-odd 00, for 5-byte fixed width
01, for 9-byte fixed width
10, reserved
11, for O-byte fixed width
5.3. Structs

An AMQP struct defines acompound type. That isatype whose format is defined entirely in terms of other types. The
simplest kind of struct consists of an ordered sequence of encoded field datafor awell known set of fields. Each field
is encoded according to the type definition for that field. Several options may be used to augment this encoding:

A struct may be packed, in which case logically absent fields are omitted from the encoded data. For these structs,
the field data is directly preceded by either 1, 2 or 4 octets of packing flags to indicate which fields are present.
Note that although the notation and encoding scheme described here would function equally well for any number of
packing flags, the structs defined by the specification only make use of 0, 1, 2, and 4 octets worth of packing flags.

» A struct may be coded, in which case the field data, and any packing flags are preceded by a 2 octet code that
uniquely identifies the struct definition. This includes the number of packing flags (if any) as well as the index,
name, and type of each field.

» A struct may be sized, in which casethefield data, any packing flags, and the struct code (if present) are all prefixed
by either a1, 2, or 4 octet unsigned byte count.

The general layout of al structsis defined in the following BNF:

47

Formal Notation

struct-size
cl ass- code
struct - code
packi ng-f | ags

struct = [struct-size] [class-code struct-code] [packing-flags] data

uint8 / uint16 / uint32

uint8 ; zero for top-level structs
uint8

uint8 / 2 uint8 / 4 uint8

data = *OCTET ; encoded field values as defined by the
; order and type of the fields specified

; in the struct definition

A struct isformally defined with the struct element:

<struct name="..."
size="..."
code="..."
pack="...">
<field name="..."
type="..."
required="..." />

</ struct>

The order of the fields within the struct definition defines the order that field data is encoded.

Attributes of a struct definition:

size

code

pack

Permitted values. 0, 1, 2, 4

If a non-zero size width is specified in the struct definition, the encoded struct is preceded by a byte count
of the indicated width. In addition to the encoded field data, this byte count MUST include the struct code
and packing flagsif present.

The size field MUST be omitted if no sizeis specified or size="0" is specified in the struct definition.
Permitted values: 0-255

If acodeisincluded inthe struct definition, the specified value MUST be preceded with the class-code, and the
resulting two octets encoded prior to theencoded fiel d dataand packing flags (if any), but after the size (if any).

The class-code and struct-code MUST be omitted from encoded structsif no code or code="none" is specified
in the struct definition.

The value of the combined class-code and struct-code is unique to any given struct definition, and MAY be
used when decoding to determine which struct definition has been encoded.

Permitted values: 0, 1, 2, 4

If a non-zero pack width is specified in the struct definition, the encoded field data MUST be preceded by
the indicated number of octets. The n' octet contains packing flags for the nt" group of 8 fields specified
in the struct definition. Within each octet the fields map in order from the least significant bit to the most
significant bit.

If apacking flag is set the corresponding field MUST be included in the encoded data.

48

Formal Notation

If apacking flag is not set the corresponding field MUST NOT be included in the encoded data.

If the struct has fewer properties than packing flags the extra packing flags are reserved for future extension
of the struct and MUST be set to zero.

Attributes of afield definition:
name The name of the field. This uniquely identifies the field within the struct.

type The type attribute identifies how the field data is to be encoded. This could refer to a primitive type,
another struct definition, or adomain definition.

required Permitted values: true, false

If this attribute is true, then the given field MUST aways be present. If astruct is parsed and the field
is absent, then the whole struct SHOULD be considered malformed.

Examples

Simple structs consist only of the encoded field data:

<struct nane="error-info" pack="0">
<field nane="code" type="uintl6" />
<field name="text" type="stril6" />

</ struct>

tommmmmmm tommmmmma +
| code | text |
tommmmmmm tommmmmma +
| uintle | stri6
tommmmmmm tommmmmma +

A sized struct prefixes the encoded representation with a byte count:

<struct nane="address" size="2">
<field nanme="host" type="str8"/>
<field nanme="port" type="uint16" />

</ struct>

dmoscooco=ao fmoccccooocccoosooooos +

| 2 octet | n octets

dmoscooco=ao dhmoococcoos dhmoococcoos +

| n | host | port |

dmoscooco=ao dhmoococcoos dhmoococcoos +
| str8 | uintl6 |
dhmoococcoos dhmoococcoos +

49

Formal Notation

Packed structs omit logically absent fields from the wire encoding:

<field name="exchange- nane" type="str8"/>

<field name="queue-nane" type="str8"/>

<field name="bi ndi ng- key" type="str8"/>
</ struct>

only present if flags are set

1 oct et \|/ v/ \|/

These encoding options can be combined:

<struct nane="content-headers" size="4" pack="2" code="123">
<field name="m ne-type" type="str8"/>
<field name="|ength" type="uint64"/>
<field name="encodi ng" type="str8"/>
</struct>
only included if flags are set
I
moccocooo moccocooo +
I I I
4 octets 1 octet 1 octet 2 octets \|/ \ |/ \ |/
moococcoaos oocccoocooos moccocooo moocooccoas moccooocoos ooccooos moococcoaos = oosao
| si ze | class-code | 123 | flags | mme-type | length | encoding
moococcoaos oocccoocooos moccocooo moocooccoas moccooocoos ooccooos moococcoaos = oosao
(code) str8 ui nt 64 str8

5.4. Domains

An AMQP domain defines a new type with a format identical to another type, but with a restricted range of values.
In some cases a closed set of permitted values is specified with an enum, and in other cases an open set of valuesis
specified with docs and rules.

An AMQP domain isformally defined with the domain element:

50

Formal Notation

<domai n nanme="..."
type="...">
<doc>
</ doc>

</ domai n>

Attributes of a domain definition:

name The name of the domain. Thisis unique within the defining context.

type The type that defines the format for this domain. This could refer to a primitive type, a struct, or another
domain definition.

5.4.1. Enums

If adomain definition includes an enum, the values permitted by the domain are restricted to a set of explicitly named
choices:

<domai n nanme="..."
type="...">
<doc>

</ doc>
<enun®
<choi ce nane="..."
val ue="..."/>
</ enun®
</ domai n>

Attributes of achoice:
name Thename of the choice. This uniquely identifies the choice within the enum.

value The value of the choice. Thisis any value that can be represented by the type of the enum and is distinct
from other choices associated with the enum.

5.5. Constants

An AMQP constant is afixed value referenced throughout the specification. Constants are formally defined with the
constant element:

<constant name="..."
val ue="...">
<doc>
</ doc>
</ const ant >

51

Formal Notation

Attributes of a constant definition:
name The name of the constant. Thisis unique among al top-level AMQP constructs.

value The value of the constant.

5.6. Classes

An AMQP class groups together related command, control, struct, and domain definitions. Classes function as a
namespace for those constructs defined within. Additionally, each classis assigned a code that forms the high byte of
any control-codes, command-codes, or struct-codes associated with the contained definitions.

A classisformally defined with the following notation:

<cl ass nane="..."
code="...">
<role .../>
<struct ... />
<domain ... />
<control ... />
<command ... />
</ cl ass>

name The name of the class. Thisis unique among al top-level AMQP constructs.

code Permitted values: 1-255
An octet that uniquely identifies the class. The special value zero is reserved to identify globally defined
constructs.

5.6.1. Roles

Each class formally defines the different roles an implementation may fulfill. These roles are referenced from within
the contained control and command definitions when defining the levels of implementation optionality.

A roleisformally defined with the following notation:

<role name="..." inplement="...">
<doc>. .. </ doc>
</rol e>
name The name of the role. Thisis unique within the class.

implement Permitted values: MAY, SHOULD, MUST
Defines whether an AMQP implemention MAY, SHOULD, or MUST implement the specified role.

Each control and command formally defines its implementation regquirements using the following notation:

52

Formal Notation

<inpl ement role="..." handle="..." />

role The name of a role defined within the containing class. The implementation requirement is interpreted
relativeto thisrole.

handle Permitted values: MAY, SHOULD, MUST

Defines whether an AM QP implemention implementing the specified role MAY, SHOULD, or MUST be
able to receive the containing control or command.

5.7. Controls

An AMQP control defines the format and semantics of a one-way instruction. Because controls are one-way, in the
event of transport failure they may need to be repeated until the effect of the instruction can be observed. For this
reason, controls often ellicit a reply that permits the peer to observe the effect. Because even the reply may be lost
to atransport failure, the semantics of controls are usually defined to be idempotent so that repeated execution of the
same instruction does not cause undesirable side-effects.

An AMQP control is encoded into the control segment of an assembly as follows:
» Theclass-codeis placed in the first octet.
» The control-code is placed in the second octet.

» Thefield values are then encoded as an unsized, uncoded struct with two octets of packing flags.

| class-code | control-code | packing-flags | fields ...
tommmmmeeaaaa Fommmmmmeeeaaaa tomm e ee e e aa- Hommmmmeeaaaa +

An AMQP control isformally defined with the control element:

<control nane="..."
code="...">

<inmpl ement role="..." handle="..." />

<field name="..."
type="..."/>

</control >

Attributes of a control definition:
name The name of the control. Thisis unique within the defining class.

code Permitted values: 0-255

53

Formal Notation

An octet that uniquely identifies the control within the class.

The field definitions define the arguments for the control. These are identical to field definitions within a struct.

5.7.1. Responses

If the effect of a control is communicated with a direct reply, the permitted response(s) are formally defined with the
response element. Multiple response elements within asingle control definition indicate alternative replies. Responses
are aways sent on the same channel as the initiating control or command.

<control nane="..."
code="...">

<inplement role="..." handle="..." />
<response nane="..."/>

;field name="..."
type="..."/>

</control >

Attributes of aresponse definition:

name The name of the reply control.

5.8. Commands

An AMQP command defines the format and semantics of an acknowledged instruction. Commands are not assumed to
be idempotent, therefore each command is assigned a sequential command-id prior to transmission, and the receiving
peer MUST execute each command in order, and exactly once regardless of how many timesit is received.

An AMQP command is encoded into the command segment of an assembly as follows:

» Theclass-codeis placed into the first octet.

e The command-code is placed into the second octet.

» The session.header struct is encoded after the class-code and command-code.

» The command arguments are then encoded as an unsized, untype struct with two octets of packing flags.

| class-code | control-code | session.header | packing-flags | fields ...
focoocomo==o fmoco-cccoc=-oc fmocooc=sccooc==o foocosc-socooo=o focoocomo==o +

A command is formally defined with the command element:

Formal Notation

<command nane="..."

code="...">
<field name="..."
type="..."/>

</ command>

5.8.1. Results

When commands produce results during execution, the result is defined as a struct and carried by the execution.result
command. The result is always sent on the same channel as the initiating command. The format of a command result
isformally defined with the optional result element:

<command nane="..."

code="...">
<field name="..."

type="..."/>
<result type="..."/>

</ command>

Attributes of aresult definition:
type Identifiesthe format of the result. ThisMUST refer to a coded struct with size="4".

A result definition may also contain the struct definition rather than reference it by name;

<command nane="..."
code="...">

<field name="..."
type="..."/>

<resul t>
<struct name="..."
si ze="4"

pack="...">
<field name="..."
type="..."/>
</ struct>
</result>
</ command>

5.8.2. Exceptions

When exceptional conditions occur during command execution, the execution.exception command is used to indicate
that an exception has occured. The exception command is sent on the channel where the problem occurred. The

55

Formal Notation

execution.error-code enum defines error codes for all the defined error conditions that can occur during command
execution.

Exceptional conditions are formally defined with the exception element. These may appear within acommand or field
definition:

<conmmand nane="..."

ot B
<excepti on name="..."
error-code="..."/>

<field name="..."

type="...">
<excepti on name="..."
error-code="..."/>
</field>

</ command>

Attributes of an exception:

name The name of the exception. This uniquely identifies the exceptional condition within the field or
command.
error-code The name of a choice defined within the execution.error-code enum.

5.9. Segments

Specific commands or controls may be defined to carry additional segments. In addition to command segments and
control segments, AMQP defines header and body segments that are used for carrying message content. If permitted,
the presence, contents, and order of these additional segmentsisformally defined with the segments element:

<command nane="..." ... >
<segnent s>
<header ... > ... </header>
<body ... />

</ segnent s>
</ conmmand>

5.9.1. Header Segment

The contents of a header segment consists of a set of sized (size="4"), coded, packed structs. These are sequentially
encoded into the segment in an undefined order. When parsing the header segment, an implementation MUST assume
that the entries may be in any order, and intermediaries MAY reorder or insert additional entries. A header segment
MUST include at most one instance of each type.

Should an intermediary encounter a struct entry with an unrecognized code, it MUST pass the entry through
unmodified.

56

Formal Notation

<header required="...">
<entry type="..." [>

</ header >

required Permitted values: true, false
Defines whether the header segment is always present or may be omitted.
Entry

Each entry in the definition of a header segment refersto a sized (size="4"), coded, packed struct that is permitted to
appear within the segment. An entry isformally defined with the entry element:

<entry type="...">
<doc> ... </doc>
</entry>

type Referencesavalid struct by name:
* Thestruct MUST include a 32 hit size, size="4".

¢ The struct MUST be coded.

5.9.2. Body Segment

A body segment contains opaque data. It is formally defined with the body element:

<body required="..." />

Attributes of a body segment:
required Permitted values: true, false

Defines whether the body segment is always present or may be omitted from the assembly.

57

6. Constants

Name Value|Description
M N- MAX- 4096 | During the initial connection negotiation, the two peers must agree upon a
FRAVE- S| ZE maximum frame size. This constant defines the minimum value to which the

maximum frame size can be set. By defining this value, the peers can guarantee
that they can send frames of up to this size until they have agreed a definitive
maximum frame size for that connection.

58

7. Types
Fixed width types

Name Code|Width in|Description
Octets
bin8 0x00|1 octet of unspecified encoding
int8 0x01(1 8-bit signed integral value (-128 - 127)
uint8 0x02(1 8-hit unsigned integral value (0 - 255)
char 0x04|1 an iso-8859-15 character
boolean 0x08(1 boolean value (zero represents fal se, nonzero represents true)
binl6 0x10(2 two octets of unspecified binary encoding
int16 0x11(2 16-hit signed integral value
uint16 0x12(2 16-hit unsigned integer
bin32 0x20|4 four octets of unspecified binary encoding
int32 0x21(4 32-hit signed integral value
uint32 0x22(4 32-bit unsigned integral value
float 0x23(4 single precision |EEE 754 32-bit floating point
char-utf32 0x27|4 single unicode character in UTF-32 encoding
sequence-no 4 serial number defined in RFC-1982
bin64 0x30(8 eight octets of unspecified binary encoding
int64 0x31(8 64-bit signed integral value
uinte4 0x32(8 64-bit unsigned integral value
double 0x33(8 double precision |[EEE 754 floating point
datetime 0x38(8 datetimein 64 bit POSIX time _t format
bin128 0x40|16 sixteen octets of unspecified binary encoding
uuid 0x48|16 UUID (RFC-4122 section 4.1.2) - 16 octets
bin256 0x50(32 thirty two octets of unspecified binary encoding
bin512 0x60|64 sixty four octets of unspecified binary encoding
bin1024 0x70|128 one hundred and twenty eight octets of unspecified binary encoding
bin40 0xc0|5 five octets of unspecified binary encoding
dec32 0xc8|5 32-bit decimal value (e.g. for use in financial values)
bin72 0xd0|9 nine octets of unspecified binary encoding
dec64 0xd8|9 64-bit decimal value (e.g. for usein financia values)
void 0xf0|0 the void type
bit 0xf1|0 presence indicator

59

Types

Type: bi n8
The bin8 type consists of exactly one octet of opaque binary data.

Wire Format

1 OCTET
dmccccozoos +
| bi n8 |
dmccccozoos +
BNF:
bi n8 = OCTET

60

Types

Type:int8
Theint8 typeisasigned integral value encoded using an 8-hit two's complement representation.

Wire Format

1 COCTET
Hemmmmeeaaa +
| int8 |
Hemmmmeeaaa +
BNF:
int8 = OCTET

61

Types

Type: ui nt 8
The uint8 typeis an 8-bit unsigned integral value.

Wire Format

BNF:

uint8 = OCTET

62

Types

Type: char
The char type encodes a single character from the is0-8859-15 character set.

Wire Format

1 OCTET
o - a - - +
| char |
o - a - - +
BNF:
char = OCTET

63

Types

Type: bool ean

The boolean type is asingle octet that encodes atrue or false value. If the octet is zero, then the boolean is false. Any
other value represents true.

Wire Format

BNF:

bool ean = OCTET

Types

Type: bi n16
The binl6 type consists of two consecutive octets of opague binary data.

Wire Format

| octet-one | octet-two |
B, B, +

BNF:

binl6 = 2 OCTET

65

Types

Type: int 16
Theintl6typeisasignedintegral value encoded using a16-bit two's complement representation in network byte order.

Wire Format

1 OCTET 1 OCTET

Fommmmeeeaaa temmmmeeaaa +
| high-byte | |owbyte |
Fommmmeeeaaa temmmmeeaaa +

BNF:

int16 = high-byte | ow byte
hi gh-byte = OCTET
| ow byte = OCTET

66

Types

Type: ui nt 16
The uint16 typeis a 16-bit unsigned integral value encoded in network byte order.

Wire Format

1 OCTET 1 OCTET

B, o - - - +
| high-byte | |owbyte |
B, o - - - +

BNF:

uint16 = high-byte | ow byte
hi gh-byte = OCTET
| ow- byte = OCTET

67

Types

Type: bi n32
The bin32 type consists of 4 consecutive octets of opague binary data.

Wire Format

| octet-one | octet-two | octet-three | octet-four |
B, B, o - momam--- - o - mo - +

BNF:

bin32 = 4 OCTET

68

Types

Type: i nt 32
Theint32 typeisasignedintegral value encoded using a32-hit two's complement representation in network byte order.

Wire Format

1 OCTET 1 OCTET 1 OCTET 1 OCTET
Fommmmeeeaaa Hommmmmeeaaaa temmmmeeaaa temmmmeeaaa +
| byte-four | byte-three | byte-two | byte-one |
Fommmmeeeaaa Hommmmmeeaaaa temmmmeeaaa temmmmeeaaa +
V5B LSB
BNF:
int32 = byte-four byte-three byte-two byte-one
byt e-four = OCTET ; nost significant byte (MSB)
byt e-three = OCTET
byte-two = OCTET
byt e-one = OCTET ; |east significant byte (LSB)

69

Types

Type: ui nt 32
The uint32 typeis a 32-bit unsigned integral value encoded in network byte order.

Wire Format

1 OCTET 1 OCTET 1 OCTET 1 OCTET
Fommmmeeeaaa Hommmmmeeaaaa temmmmeeaaa temmmmeeaaa +
| byte-four | byte-three | byte-two | byte-one |
Fommmmeeeaaa Hommmmmeeaaaa temmmmeeaaa temmmmeeaaa +
V5B LSB
BNF:
uint32 = byte-four byte-three byte-two byte-one
byt e-four = OCTET ; nost significant byte (MSB)
byt e-three = OCTET
byte-two = OCTET
byt e-one = OCTET ; |east significant byte (LSB)

70

Types

Type: f| oat

The float type encodes a single precision 32-bit floating point number. The format and operations are defined by the
|EEE 754 standard for 32-bit floating point numbers.

Wire Format

| EEE 754 32-bit fl oat

BNF:

float = 4 OCTET ; |EEE 754 32-bit floating point nunber

71

Types

Type: char-ut f 32
The char-utf32 type consists of a single unicode character in the UTF-32 encoding.

Wire Format

UTF- 32 char act er

BNF:

char-utf32 = 4 OCTET ; single UTF-32 character

72

Types

Type: sequence- no

The sequence-no type encodes, in network byte order, a serial humber as defined in RFC-1982. The arithmetic,
operators, and ranges for numbers of this type are defined by RFC-1982.

Wire Format

RFC- 1982 serial nunber

BNF:

sequence-no = 4 OCTET ; RFC- 1982 serial nunber

73

Types

Type: bi n64
The bin64 type consists of eight consecutive octets of opaque binary data.

Wire Format

fmccccozoo=o dmccccozoo=o dhmco=o dmccocoocooooo dmccocoocooooo +

| octet-one | octet-two | ... | octet-seven | octet-eight |
B, B, +----- o - momam--- - o - momam--- - +

BNF:

bi n64 = 8 OCTET

74

Types

Type: i nt 64
Theint64 typeisasignedintegral value encoded using a 64-hit two's complement representation in network byte order.

Wire Format

1 COCTET 1 COCTET 1 COCTET 1 COCTET
Hommmmmeeaaaa Hommmmmeeaaaa +e--m - - temmmmeeaaa temmmmeeaaa +
| byte-eight | byte-seven | ... | byte-two | byte-one |
Hommmmmeeaaaa Hommmmmeeaaaa +e--m - - temmmmeeaaa temmmmeeaaa +

MSB LSB

BNF:

int64 = byte-eight byte-seven byte-six byte-five
byt e-four byte-three byte-two byte-one

byt e-eight = 1 OCTET ; nost significant byte (MSB)
byt e-seven = 1 OCTET
byte-six = 1 OCTET
byte-five = 1 OCTET
byte-four = 1 OCTET
byte-three = 1 OCTET
byte-two = 1 OCTET
byte-one = 1 OCTET ; |east significant byte (LSB)

75

Types

Type: ui nt 64
The uint64 type is a 64-bit unsigned integral value encoded in network byte order.

Wire Format

1 COCTET 1 COCTET 1 COCTET 1 COCTET
Hommmmmeeaaaa Hommmmmeeaaaa +e--m - - temmmmeeaaa temmmmeeaaa +
| byte-eight | byte-seven | ... | byte-two | byte-one |
Hommmmmeeaaaa Hommmmmeeaaaa +e--m - - temmmmeeaaa temmmmeeaaa +

MSB LSB

BNF:

uint64 = byte-ei ght byte-seven byte-six byte-five
byt e-four byte-three byte-two byte-one

byt e-eight = 1 OCTET ; nost significant byte (MSB)
byt e-seven = 1 OCTET
byte-six = 1 OCTET
byte-five = 1 OCTET
byte-four = 1 OCTET
byte-three = 1 OCTET
byte-two = 1 OCTET
byte-one = 1 OCTET ; |east significant byte (LSB)

76

Types

Type: doubl e

The double type encodes a double precision 64-bit floating point number. The format and operations are defined by
the IEEE 754 standard for 64-bit double precision floating point numbers.

Wire Format

| EEE 754 64-bit fl oat

BNF:

doubl e = 8 OCTET ; doubl e precision | EEE 754 floating poi nt nunber

77

Types

Type: dat eti ne
The datetime type encodes a date and time using the 64 bit POSIX time_t format.

Wire Format

posix time_t format

BNF:

datetime = 8 OCTET ; 64 bit posix tinme_t format

78

Types

Type: bi n128
The bin128 type consists of 16 consecutive octets of opague binary data.

Wire Format

fmccccozoo=o dmccccozoo=o dhmco=o dmccccoocoosooso dmccccoosoosooso +

| octet-one | octet-two | ... | octet-fifteen | octet-sixteen |
B, B, +----- o - e o maa- oo B, +

BNF:

bin128 = 16 OCTET

79

Types

Type: uui d

The uuid type encodes a universally unique id as defined by RFC-4122. The format and operations for this type can
be found in section 4.1.2 of RFC-4122.

Wire Format

16 OCTETs

RFC- 4122 UUI D

BNF:

uuid = 16 OCTET ; RFC-4122 section 4.1.2

80

Types

Type: bi n256
The bin256 type consists of thirty two consecutive octets of opague binary data.

Wire Format

fmccccozoo=o dmccccozoo=o dhmco=o dhmccccoocoocoooooso dmccccoocoocoooooso +

| octet-one | octet-two | ... | octet-thirty-one | octet-thirty-two |
B, B, +----- s s +

BNF:

bi n256 = 32 OCTET

81

Types

Type: bi n512
The bin512 type consists of sixty four consecutive octets of opaque binary data.

Wire Format

fmccccozoo=o dmccccozoo=o dhmco=o dhmccccoocoocoocoosoo dmccccoocoocoooooso +

| octet-one | octet-two | ... | octet-sixty-three | octet-sixty-four |
B, B, +----- o e e o meamooooooo s +

BNF:

bi n512 = 64 OCTET

82

Types

Type: bi n1024
The bin1024 type consists of one hundred and twenty eight octets of opague binary data.

Wire Format

| octet-one | octet-two | ... | octet-one-twenty-seven | octet-one-twenty-eight |
Fommmmeeeaaa Fommmmeeaaaa +e--m - - e m e e e e eeeemmmeaaan e m e e e e eeemmmmeaaaa +

BNF:

bi n1024 = 128 OCTET

83

Types

Type: bi n40
The bind0 type consists of five consecutive octets of opaque binary data.

Wire Format

| octet-one | octet-two | octet-three | octet-four | octet-five |
B, B, o - momam--- - o - mo - o - e o - +

BNF:

bi n40 = 5 OCTET

Types

Type: dec32

The dec32 type is decimal value with a variable number of digits following the decimal point. It is encoded as an 8-
bit unsigned integral value representing the number of decimal places. Thisis followed by the signed integral value
encoded using a 32-hit two's complement representation in network byte order.

The former value is referred to as the exponent of the divisor. The latter value is the mantissa. The decimal valueis
given by: mantissa/ 10"exponent.

Wire Format
1 COCTET 4 OCTETs
S R +
| exponent | nantissa |
S R +
uint8 int32
BNF:
dec32 = exponent mantissa
exponent = uint8
manti ssa = int32

85

Types

Type: bi n72
The bin72 type consists of nine consecutive octets of opaque binary data.

Wire Format

B, B, +----- o - momam--- - o - mo - +
| octet-one | octet-two | ... | octet-eight | octet-nine |
B, B, +----- o - momam--- - o - mo - +

BNF:

bi n64 = 9 OCTET

86

Types

Type: dec64

The dec64 type is decimal value with a variable number of digits following the decimal point. It is encoded as an 8-
bit unsigned integral value representing the number of decimal places. Thisis followed by the signed integral value
encoded using a 64-hit two's complement representation in network byte order.

The former value is referred to as the exponent of the divisor. The latter value is the mantissa. The decimal valueis
given by: mantissa/ 10"exponent.

Wire Format
1 COCTET 8 OCTETs
S R +
| exponent | nantissa |
S R +
uint8 i nt 64
BNF:
dec64 = exponent mantissa
exponent = uint8
manti ssa = int64

87

Types

Type: voi d

The void type is used within tagged data structures such as maps and lists to indicate an empty value. The void type
has no value and is encoded as an empty sequence of octets.

88

Types

Type: bi t

The bit type is used to indicate that a packing flag within a packed struct is being used to represent a boolean value
based on the presence of an empty value. The bit type has no value and is encoded as an empty sequence of octets.

89

Types

Variable width types

Variable width types consist of a number of octets which represent an unsgigned integral size; followed by the given
number of octets. The size field should be read as if it were auint8, if there is one size octet, as a uint16 if there are

two size octets, aunit32 if there are four size octets, and so on.

Name Code|Size Octets | Description

vbin8 0x80(1 up to 255 octets of opague binary data
str8-latin 0x84(1 up to 255 iso0-8859-15 characters

str8 0x85(1 up to 255 octets worth of UTF-8 unicode
str8-utf16 0x86(1 up to 255 octets worth of UTF-16 unicode
vbinl6 0x90(2 up to 65535 octets of opaque binary data
str16-latin 0x94 |2 up to 65535 is0-8859-15 characters

str16 0x95(2 up to 65535 octets worth of UTF-8 unicode
str16-utf16 0x96(2 up to 65535 octets worth of UTF-16 unicode
byte-ranges 2 byte ranges within a 64-bit payload
sequence-set 2 ranged set representation

vbin32 Oxal|4 up to 4294967295 octets of opague binary data
map Oxa8|4 amapping of keysto typed values

list 0xa9|4 aseries of consecutive type-value pairs

array Oxaa|4 adefined length collection of values of asingle type
struct32 Oxab|4 acoded struct with a 32-bit size

90

Types

Type: vbi n8

The vbin8 type encodes up to 255 octets of opague binary data. The number of octets is first encoded as an 8-hit
unsigned integral value. Thisisfollowed by the actual data.

Wire Format

1 OCTET si ze OCTETs

Hemmmmeaaa Fommmmmmeeaaaa +
| size | octets |
Hemmmmeaaa Fommmmmmeeaaaa +
ui nt8
BNF:
vbi n8 = si ze octets
size = uint8
octets = 0*255 OCTET ; size OCTETs

91

Types

Type: str8-latin

The str8-latin type encodes up to 255 octets of is0-8859-15 characters. The number of octetsisfirst encoded as an 8-
bit unsigned integral value. Thisisfollowed by the actual characters.

Wire Format

1 OCTET si ze OCTETs
Hemmmmeaaa e e e e e e eeeeemmmeaaa +
| size | characters |
Hemmmmeaaa e e e e e e eeeeemmmeaaa +

ui nt 16 i so-8859-15 characters

BNF:
str8-latin size characters

uint8
0*255 OCTET ; size OCTETs

si ze
characters

92

Types

Type: str8

The str8 type encodes up to 255 octets worth of UTF-8 unicode. The number of octets of unicode is first encoded
as an 8-hit unsigned integral value. Thisis followed by the actual UTF-8 unicode. Note that the encoded size refers
to the number of octets of unicode, not necessarily the number of characters since the UTF-8 unicode may include
multi-byte character sequences.

Wire Format

1 OCTET si ze OCTETs
Hemmmmeaaa Fommm e meeeaaaa +
| size | utf8-unicode |
Hemmmmeaaa Fommm e meeeaaaa +
ui nt8
BNF:
str8 = size utf8-unicode
size = uint8
ut f 8-uni code = 0*255 OCTET ; size OCTETs

93

Types

Type: str8-utfl16

The str8-utf 16 type encodes up to 255 octetsworth of UTF-16 unicode. The number of octets of unicodeisfirst encoded
as an 8-bit unsigned integral value. Thisis followed by the actual UTF-16 unicode. Note that the encoded size refers
to the number of octets of unicode, not the number of characters since the UTF-16 unicode will include at least two
octets per unicode character.

Wire Format

1 OCTET si ze OCTETs
Hemmmmeaaa tomm e ee e e aa- +
| size | utfl6-unicode |
Hemmmmeaaa tomm e ee e e aa- +
ui nt8
BNF:
str8-utfl6 = size utfl6-uni code
size = uint8
ut f 16-uni code = 0*255 OCTET ; size OCTETs

94

Types

Type: vbi n16

The vhin16 type encodes up to 65535 octets of opagque binary data. The number of octets is first encoded as a 16-bit
unsigned integral valuein network byte order. Thisis followed by the actua data.

Wire Format

2 OCTETs si ze OCTETs

Hemmmmeeaaa Fommmmmeeaaaaa +
| si ze | octets |
Hemmmmeeaaa Fommmmmeeaaaaa +
ui nt 16
BNF:
vbi n16 = size octets
size = uint16
octets = 0*65535 OCTET ; size OCTETs

95

Types

Type: strl16-latin

The str16-latin type encodes up to 65535 octets of is-8859-15 characters. The number of octets is first encoded as a
16-bit unsigned integral value in network byte order. Thisisfollowed by the actual characters.

Wire Format

2 OCTETs si ze OCTETs
Hemmmmeeaaa e m e e e e eeeemmmeaaan +
| si ze | characters |
Hemmmmeeaaa e m e e e e eeeemmmeaaan +

ui nt 16 i so-8859-15 characters

BNF:

size characters
ui nt 16
0*65535 OCTET ; size OCTETs

strl6-latin
si ze
characters

96

Types

Type: str16

The strl6 type encodes up to 65535 octets worth of UTF-8 unicode. The number of octetsis first encoded as a 16-bit
unsigned integral valuein network byte order. Thisisfollowed by the actual UTF-8 unicode. Note that the encoded size
refers to the number of octets of unicode, not necessarily the number of unicode characters since the UTF-8 unicode
may include multi-byte character sequences.

Wire Format

2 OCTETs si ze OCTETs
Hemmmmeeaaa Fommmmmmeeeaaaa +
| si ze | utf8-unicode |
Hemmmmeeaaa Fommmmmmeeeaaaa +
ui nt 16
BNF:
strl6 = size utf8-unicode
size = uint16
ut f 8-uni code = 0*65535 OCTET ; size OCTETs

97

Types

Type: strl16-utfl6

The str16-utf16 type encodes up to 65535 octets worth of UTF-16 unicode. The number of octets is first encoded as
a 16-bit unsigned integral value in network byte order. Thisis followed by the actual UTF-16 unicode. Note that the
encoded sizerefersto the number of octets of unicode, not the number of unicode characters since the UTF-16 unicode
will include at least two octets per unicode character.

Wire Format

2 CCTETs si ze OCTETs
Hemmmmeeaaa tomm e ee e e aa- +
| si ze | utfl6-uni code
Hemmmmeeaaa tomm e ee e e aa- +

ui nt 16
BNF:

si ze utf16-uni code
ui nt 16
0*65535 OCTET ; size OCTETs

str16-utfl16
si ze
ut f 16- uni code

98

Types

Type: byt e-ranges

The byte-ranges type encodes up to 65535 octets worth of non-overlapping, non-touching, ascending byte ranges
within a 64-bit sequence of bytes. Each range is represented as an inclusive lower and upper bound that identifies all
the byte offsets included within a given range.

The number of octets of datais first encoded as a 16-bit unsigned integral value in network byte order. Thisis then
followed by the encoded representation of the rangesincluded in the set. These MUST be encoded in ascending order,
and any two ranges included in agiven set MUST NOT include overlapping or touching byte offsets.

Each range is encoded as a pair of 64-bit unsigned integral values in network byte order respectively representing
the lower and upper bounds for that range. Note that because each range is exactly 16 octets, the size in octets of the
encoded ranges will always be 16 times the number of rangesin the set.

Wire Format

+----= size OCTETs =----+
I I
2 CCTETs | 16 OCTETs |
moococcoaos = oosao moccooocoos = oosao +
| si ze (I range |\
moococcoaos oo dmcccoccoccs=s + \---+
ui nt 16 /1 VN

/! A\

ui nt 64 ui nt 64

BNF:

byt e-ranges si ze *range

size = uintl16
range = | ower upper
| ower = uint64
upper = uint 64

99

Types

Type: sequence- set

The sequence-set type isa set of pairs of RFC-1982 numbers representing a discontinuous range within an RFC-1982
sequence. Each pair represents a closed interval within the list.

Sequence-sets can be represented as lists of pairs of positive 32-bit numbers, each pair representing a closed interval
that does not overlap or touch with any other interval in the list. For example, a set containing words 0, 1, 2, 5, 6,
and 15 can be represented:

[(0, 2), (5 6), (15 19)]

1) The list-of-pairs representation is sorted ascending (as defined by RFC 1982 (http://www.ietf.org/rfc/rfc1982.txt))
by the first elements of each pair.

2) The list-of-pairsis flattened into alist-of-words.
3) Each word in the list is packed into ascending locations in memory with network byte ordering.
4) The size in bytes, represented as a 16-bit network-byte-order unsigned value, is prepended.

For instance, the example from above would be encoded:

[(O0, 2), (5, 6), (15, 15)] -- already sorted
[0, 2, 5, 6, 15, 15] -- flattened
000000000000000200000005000000060000000FO0000000F -- bytes in hex

0018000000000000000200000005000000060000000F0000000F -- bytes in hex
I ength (24) prepended

Wire Format
+----= size OCTETs =----+
[[
2 OCTETs | 8 OCTETs |
fmoococcoaos T fmoccoooc=os T +
| si ze [range |\
fmoococcoaos oo dmcccocsoccs= + \---+
ui nt 16 !/ VA
!/ VA
!/ VA
!/ VA
/| 4 OCTETs 4 OCTETs \
fmocccoococc=o fmocccoococc=o +
| | ower | upper |
fmocccoococc=o fmocccoococc=o +
sequence- no sequence- no
BNF:

sequence- set si ze *range

si ze ui nt 16 ; length of variable portion in bytes
range = | ower upper ; inclusive

| ower = sequence-no

upper = sequence-no

100

Types

Type: vbi n32

The vbin32 type encodes up to 4294967295 octets of opaque binary data. The number of octetsis first encoded as a
32-bit unsigned integral value in network byte order. Thisis followed by the actual data.

Wire Format

4 OCTETs si ze OCTETs
Hemmmmeeaaa Fommmmmeeaaaaa +
| si ze | octets |
Hemmmmeeaaa Fommmmmeeaaaaa +
ui nt 32
BNF:
vbi n32 = size octets
size = uint32
octets = 0%4294967295 OCTET ; size OCTETs

101

Types

Type: map

A map is a set of distinct keys where each key has an associated (type,value) pair. The triple of the key, type, and
value, form an entry within a map. Each entry within a given map MUST have adistinct key. A map is encoded as a
sizein octets, a count of the number of entries, followed by the encoded entries themselves.

An encoded map may contain up to (4294967295 - 4) octets worth of encoded entries. The size is encoded as a 32-bit
unsigned integral valuein network byte order equal to the number of octetsworth of encoded entries plus 4. (The extra
4 octetsis added for the entry count.) The sizeisthen followed by the number of entries encoded as a 32-bit unsigned
integral valuein network byte order. Finally the entries are encoded sequentialy.

An entry is encoded as the key, followed by the type, and then the value. The key is always a string encoded as a str8.
The type is a single octet that may contain any valid AMQP type code. The value is encoded according to the rules
defined by the type code for that entry.

Wire Format

R = size OCTETS =----------- +

[
4 OCTETs | 4 OCTETs |

moococcoaos moocooccoas = oosao ooccocooooccoos = oosao +
| si ze | count | /] entry |\
Fommmmmmaao Fommmmmmaao B + \---+
ui nt 32 ui nt 32 I VN
I VN
/1 VN
/1 VN
/1 VN
/ k OCTETs 1 OCTET n OCTETs \
moccooocoos moccocooo moccooocoos +
| key | type | val ue
moccooocoos moccocooo moccooocoos +
str8 *type*
BNF:
map = size count *entry
size = uint32 ; size of count and entries in octets
count = uint32 ; nunmber of entries in the map
entry = key type val ue
key = str8
type = OCTET ; type code of the val ue
val ue = *OCTET ; the encoded val ue

102

Types

Type: | i st

A list is an ordered sequence of (type, value) pairs. The (type, value) pair forms an item within the list. The list may
contain items of many distinct types. A list is encoded as a size in octets, followed by acount of the number of items,
followed by the items themselves encoded in their defined order.

An encoded list may contain up to (4294967295 - 4) octets worth of encoded items. The size is encoded as a 32-bit
unsigned integral value in network byte order equal to the number of octets worth of encoded items plus 4. (The extra
4 octets is added for the item count.) The size is then followed by the number of items encoded as a 32-bit unsigned
integral value in network byte order. Finally the items are encoded sequentially in their defined order.

An item is encoded as the type followed by the value. The type is a single octet that may contain any valid AMQP
type code. The value is encoded according to the rules defined by the type code for that item.

Wire Format

L = size OCTETs =--------- +
I I
4 OCTETs | 4 OCTETs |
moococcoaos moocooccoas = oosao moocooccoas = oosao +
| si ze | count (I item |\ |
moococcoaos moocooccoas mo=f dmcsccccos=s + \---+
ui nt 32 ui nt 32 !/ o\
I VN
/ 1 OCTET n OCTETs \
moocooccoas moccooocoos +
| type | val ue |
moocooccoas moccooocoos +
type

BNF:

list = size count *item

size = uint32 ; Size of count and itenms in octets
count = uint32 ; nunber of itens in the |ist
item= type val ue

type = OCTET ; type code of the val ue

val ue = *OCTET ; the encoded val ue

103

Types

Type: array

An array is an ordered sequence of values of the sametype. The array is encoded in as asize in octets, followed by a
type code, then a count of the number valuesin the array, and finally the values encoded in their defined order.

An encoded array may contain up to (4294967295 - 5) octets worth of encoded values. The size is encoded as a 32-bit
unsigned integral valuein network byte order equal to the number of octetsworth of encoded values plus 5. (The extra
5 octets consist of 4 octets for the count of the number of values, and one octet to hold the type code for the itemsin
the array.) The size is then followed by a single octet that may contain any valid AMQP type code. The type code is
then followed by the number of values encoded as a 32-bit unsigned integral value in network byte order. Finaly the
values are encoded sequentially in their defined order according to the rules defined by the type code for the array.

Wire Format
4 COCTETs 1 OCTET 4 OCTETs (size - 5) OCTETs
foocooooooc foocomo=oo foocooooooo foocomccoccooocoocomoooo=oo +
| si ze | type | count | val ues |
foocooooooc foocomo=oo foocooooooo foocomccoccooocoocomoooo=oo +
ui nt 32 ui nt 32 *count* encoded *types*
BNF:

array = size type count val ues

size = uint32 ; size of type, count, and values in octets
type = OCTET ; the type of the encoded val ues
count = uint32 ; nunmber of itenms in the array

val ues = 0*4294967290 OCTET ; (size - 5) OCTETs

104

Types

Type: struct 32

The struct32 type describes any coded struct with a 32-bit (4 octet) size. The typeisrestricted to be only coded structs
with a 32-bit size, consequently the first six octets of any encoded value for thistype MUST always contain the size,
class-code, and struct-codein that order.

The size is encoded as a 32-bit unsigned integral value in network byte order that is equal to the size of the encoded
field-data, packing-flags, class-code, and struct-code. The class-code isasingle octet that may be set to any valid class
code. The struct-code is a single octet that may be set to any valid struct code within the given class-code.

Thefirst six octets are then followed by the packing flagsand encoded field data. The presence and quantity of packing-
flags, as well as the specific fields are determined by the struct definition identified with the encoded class-code and
struct-code.

Wire Format

4 OCTETs 1 OCTET 1 OCTET pack-wi dt h OCTETs n OCTETs
moococcoaos mocccoocooos mocccoocoocso mocccooccoccooocooos oocccoocooos +
| si ze | class-code | struct-code | packi ng-f | ags | field-data |
moococcoaos mocccoocooos mocccoocoocso mocccooccoccooocooos oocccoocooos +

ui nt 32

n = (size - 2 - pack-w dth)

BNF:

struct32 = size class-code struct-code packing-flags field-data

size = uint32

cl ass-code = OCTET ; zero for top-level structs
struct-code = OCTET ; together with class-code identifies the struct
; definition which determ nes the pack-wi dth and
; fields

packi ng-flags = 0*4 OCTET ; pack-w dth OCTETs

field-data = *OCTET ; (size - 2 - pack-wi dth) OCTETs

105

Types

Mandatory Types
The following types MUST be natively understood by a conforming AMQP Server:

uint8, uint16, uint32, sequence-no, uint64, datetime, uuid, vbing, str8, vbinl6, strl6, byte-ranges, sequence-set, vbin32,
map, array, struct32, bit.

Other types are defined for the use of application defined properties which may be passed in the header sections of
messages. Since such values are passed through unchanged by an AMQP server, there is no need for the server to
parse them.

106

8. Domains

Domain: segnent -t ype

Name Type Description
segnent - ui nt8 valid values for the frame type indicator.
type

Segments are defined in Section 4.4.1, “Assemblies, Segments, and Frames’. The segment domain defines the valid
values that may be used for the segment indicator within the frame header.

Valid Values
Value|Name Description

O|control The frame type indicator for Control segments (see Section 5.7, “Controls”).

1|conmand The frame type indicator for Command segments (see Section 5.8,
“Commands’).

2 |header The frame type indicator for Header segments (see Section 5.9.1, “Header
Segment”).

3|body The frame type indicator for Body segments (see Section 5.9.2, “Body
Segment”).

107

Domains

Domain: tr ack

Name

Type

Description

track

ui nt 8

Valid values for transport level tracks

Tracks are defined in Section 4.4.2, “Channels and Tracks’. The track domain defines the valid values that may used
for the track indicator within the frame header

Valid Values
Value|Name Description
Ofcontrol The track used for all controls. All controls defined in this specification MUST
be sent on track 0.
1|{comrand The track used for all commands. All commands defined in this specification
MUST be sent on track 1.

108

Domains

Domain: str16-array

Name

Type

Description

strl6-array

array

An array of values of type strl16.

An array of values of type stri6.

109

9. Control Classes

Class: connecti on

CodeName Description

Ox1l|connecti on [work with connections

An AMQP server MUST implement the connection class.

An AMQP client MUST implement the connection class.

Methods

Code |Name

Ox1 start(server-properties. map, mechanisms: str16-array, locales. str16-array)

start connection negotiation

0x2 start-ok(client-properties. map, mechanism: str8, response: vbin32, locale; str8)

select security mechanism and locale
0x3 |secure(challenge: vbin32)

security mechanism challenge

0x4 secure-ok(response: vbin32)

security mechanism response

0x5 |tune(channel-max: uint16, max-frame-size: uint16, heartbeat-min: uint16, heartbeat-max: uint16)

propose connection tuning parameters

0x6 tune-ok(channel-max: uint16, max-frame-size: uint16, heartbeat: uint16)

negotiate connection tuning parameters

ox7 open(virtual-host: str8, capabilities: stri6-array, insist: bit)

open connection to virtual host

0x8 open-ok(known-hosts: amgp-host-array)

signal that connection is ready

0x9 redirect(host: amgp-host-url, known-hosts. amgp-host-array)

redirects client to other server
Oxa heartbeat()
indicates connection is till aive

Oxb close(reply-code: close-code, reply-text: str8)

reguest a connection close

Oxc close-ok()

confirm a connection close

The connection class provides controls for a client to establish a network connection to a server, and for both peers
to operate the connection thereafter.

110

Control Classes

Grammar:

connecti on = open- connecti on
*use- connecti on
cl ose- connecti on
open-connection = C: protocol - header
S: START C: START- OK
*chal | enge
S: TUNE C: TUNE- OK
C: OPEN S: OPEN- OK | S: REDI RECT
S: SECURE C: SECURE- OK
*channel
C:. CLOSE S: CLOSE- OK
S: CLOSE C: CLOSE- OK

chal | enge
use-connecti on
cl ose- connecti on

= nouon

111

Control Classes

Domain: connecti on. cl ose- code

Name Type

Description

cl ose-code |uintl16

code used in the connection.close control to indicate reason for closure

Valid Values
Value|Name Description
200 |nor mal The connection closed normally.

320|connecti on-

An operator intervened to close the connection for some reason. The client may

forced retry at some later date.

402|i nval i d- The client tried to work with an unknown virtual host.
pat h

501 (fram ng- A valid frame header cannot be formed from the incoming byte stream.
error

112

Control Classes

Domain: connect i on. angp- host - ur|

Name Type Description
angp- host- |strl16 URL for identifying an AMQP Server
url

The amgp-url domain defines a format for identifying an AMQP Server. It is used to provide alternate hosts in the
case where a client has to reconnect because of failure, or because the server requests the client to do so upon initial
connection.

BNF:
angp_ur | = "angp:" prot_addr_|i st
prot _addr_li st = [prot_addr ","]* prot_addr
prot _addr = tcp_prot_addr | tls_prot_addr

tcp_prot _addr tcp_id tcp_addr

tcp_id = "tcp:" |

t cp_addr = [host [":" port]]

host = <as per http://ww.ietf.org/rfc/rfc3986.txt>
port = nunber

113

Control Classes

Domain: connecti on. angp- host - arr ay

Name Type Description
angp- host- |array An array of values of type amqp-host-url
array

Used to provide alist of alternate hosts.

114

Control Classes

Control: connecti on. start

Name start
Code Ox1
Response start-ok

An AMQP client MUST handle incoming connection.start controls.

This control starts the connection negotiation process by telling the client the supported security mechanisms and
locales from which the client can choose.

Arguments
Name Type Description
server - map server properties optional

properties

mechani s |st r16- arr ay |available security mechanisms required

A list of the security mechanisms that the server supports.

| ocal es str16- array |available message locales required

A list of the message locales that the server supports. The locale defines the language in which the
server will send reply texts.

Rules

Rule: protocol-name

If the server cannot support the protocol specified inthe protocol header, it MUST closethe socket connection
without sending any response control.

Scenario: The client sends a protocol header containing an invalid protocol name. The server must
respond by closing the connection.

Rule: client-support

If the client cannot handl e the protocol version suggested by the server it MUST close the socket connection.

Scenario: The server sends a protocol version that is lower than any valid implementation, e.g. 0.1. The
client must respond by closing the connection.

Rule: required-fields

The properties SHOULD contain at least these fields: "host", specifying the server host name or address,
"product"”, giving the name of the server product, "version", giving the name of the server version, "platform”,
giving the name of the operating system, "copyright”, if appropriate, and "information", giving other general
information.

Scenario: Client connects to server and inspects the server properties. It checks for the presence of the
required fields.

115

Control Classes

Rule: required-support

The server MUST support at least theen USlocale.

Scenario: Client connectsto server and inspectsthelocalesfield. It checksfor the presence of therequired
locale(s).

116

Control Classes

Control: connecti on. start - ok

Name

start-ok

Code

0x2

An AMQP server MUST handle incoming connection.start-ok controls.

This control selectsa SASL security mechanism.

Arguments
Name Type Description
client- map client properties optional
properties
mechani sm |str8 selected security mechanism required
A single security mechanisms selected by the client, which must be one of those specified by the
server.
response vbi n32 ‘security response data ‘required
A block of opaque data passed to the security mechanism. The contents of this data are defined by
the SASL security mechanism.
| ocal e str8 ‘selected message locale ‘required
A single message local e selected by the client, which must be one of those specified by the server.
Rules

Rule: required-fields

The properties SHOULD contain at least these fields: "product”, giving the name of the client product,
"version", giving the name of the client version, "platform", giving the name of the operating system,
"copyright", if appropriate, and "information”, giving other general information.

Rule: security

The client SHOUL D authenticate using the highest-level security profileit can handle from thelist provided
by the server.

Rule: validity

If the mechanism field does not contain one of the security mechanisms proposed by the server in the Start
control, the server MUST close the connection without sending any further data.

Scenario: Client connects to server and sends an invalid security mechanism. The server must respond
by closing the connection (a socket close, with no connection close negotiation).

117

Control Classes

Control: connecti on. secur e

Name secure
Code 0x3
Response secure-ok

An AMQP client MUST handle incoming connection.secure controls.

The SASL protocol works by exchanging challenges and responses until both peers have received sufficient
information to authenticate each other. This control challenges the client to provide more information.

Arguments

Name Type Description

chal | enge vbi n32 security challenge data required
Challenge information, a block of opague binary data passed to the security mechanism.

118

Control Classes

Control: connecti on. secur e- ok

Name

secur e- ok

Code

0x4

An AMQP server MUST handle incoming connection.secure-ok controls.

This control attempts to authenticate, passing ablock of SASL data for the security mechanism at the server side.

Arguments
Name Type Description
response vbi n32 security response data required

A block of opague data passed to the security mechanism. The contents of this data are defined by

the SASL security mechanism.

119

Control Classes

Control: connecti on. t une

Name tune
Code 0x5
Response tune-ok

An AMQP client MUST handle incoming connection.tune controls.

This control proposes a set of connection configuration values to the client. The client can accept and/or adjust these.

Arguments

Name Type Description

channel - max |ui nt 16 proposed maximum channels ‘optiona]
The maximum total number of channels that the server allows per connection. If thisis not set it
means that the server does not impose a fixed limit, but the number of allowed channels may be
limited by available server resources.

max-franme- |uint16 ‘proposed maximum frame size ‘optional

Size Thelargest frame size that the server proposes for the connection. The client can negotiate alower
value. If thisis not set means that the server does not impose any specific limit but may reject very
large framesif it cannot allocate resources for them.

heartbeat- |uintl16 ‘the minimum supported heartbeat delay ‘optiona]

mn The minimum delay, in seconds, of the connection heartbeat supported by the server. If thisis not
set it means the server does not support sending heartbeats.

heartbeat- |uint16 ‘the maximum supported heartbeat delay ‘optional

max The maximum delay, in seconds, of the connection heartbeat supported by the server. If thisis not
set it means the server has no maximum.

Rules

Rule: minimum

Until the max-frame-size has been negotiated, both peersMUST accept frames of upto MIN-MAX-FRAME-
SIZE octetslarge, and the minimum negotiated value for max-frame-sizeisalso MIN-MAX-FRAME-SIZE.

Scenario: Client connects to server and sends a large properties field, creating a frame of MIN-MAX-
FRAME-SIZE octets. The server must accept this frame.

Rule: permitted-range

The heartbeat-max value must be greater than or equal to the value supplied in the heartbeat-min field.

Rule: no-heartbeat-min

If no heartbeat-min is supplied, then the heartbeat-max field MUST remain empty.

120

Control Classes

Control: connecti on. t une- ok

Name t une- ok
Code 0x6

An AMQP server MUST handle incoming connection.tune-ok controls.

This control sendsthe client's connection tuning parametersto the server. Certain fields are negotiated, others provide
capability information.

Arguments

Name Type Description

channel - max |ui nt 16 negotiated maximum channels ‘required
The maximum total number of channels that the client will use per connection.

mex-frane- |uintl6 negotiated maximum frame size ‘optional

si ze

Thelargest frame sizethat the client and server will use for the connection. If it isnot set meansthat
the client does not impose any specific limit but may reject very large frames if it cannot allocate
resources for them. Note that the max-frame-size limit applies principally to content frames, where
large contents can be broken into frames of arbitrary size.

heart beat uint16 negotiated heartbeat delay optional

The delay, in seconds, of the connection heartbeat chosen by the client. If it is not set it means the
client does not want a heartbeat.

Rules

Rule: upper-limit

If the client specifies a channel max that is higher than the value provided by the server, the server MUST
close the connection without attempting a negotiated close. The server may report the error in some fashion
to assist implementers.

Rule: available-channels

If the client agreesto a channel-max of N channels, then the channels available for communication between
client and server are precisely the channels numbered 0 to (N-1).

Rule: minimum

Until the max-frame-size has been negotiated, both peersMUST accept frames of upto MIN-MAX-FRAME-
SIZE octetslarge, and the minimum negotiated value for max-frame-sizeisalso MIN-MAX-FRAME-SIZE.

Rule: upper-limit

If the client specifies amax-frame-size that is higher than the value provided by the server, the server MUST
close the connection without attempting a negotiated close. The server may report the error in some fashion
to assist implementers.

121

Control Classes

Rule: max-frame-size

A peer MUST NOT send frames larger than the agreed-upon size. A peer that receives an oversized frame
MUST close the connection with the framing-error close-code.

Rule: permitted-range

The chosen heartbeat MUST be in the range supplied by the heartbeat-min and heartbeat-max fields of
connection.tune.

Rule: no-heartbeat-min

The heartbeat field MUST NOT be set if the heartbeat-min field of connection.tune was not set by the server.

122

Control Classes

Control: connecti on. open

Name open
Code 0ox7
Response open-ok
Response redirect

An AMQP server MUST handle incoming connection.open controls.

This control opens a connection to a virtual host, which is a collection of resources, and acts to separate multiple
application domains within aserver. The server may apply arbitrary limits per virtual host, such as the number of each
type of entity that may be used, per connection and/or in total.

Arguments
Name Type Description
vi rtual - str8 virtual host name ‘required
host The name of the virtual host to work with.
capabilitiesstrl6-array ‘ required capabilities ‘optional
The client can specify zero or more capability names. The server can use this to determine how to
process the client's connection request.
i nsi st bi t ‘insist onh connecting to server ‘optional
In aconfiguration with multiple collaborating servers, the server may respond to a connection.open
control with a Connection.Redirect. The insist option tells the server that the client isinsisting on
a connection to the specified server.
Rules

Rule: separation

If the server supports multiple virtual hosts, it MUST enforce a full separation of exchanges, queues, and
all associated entities per virtual host. An application, connected to a specific virtual host, MUST NOT be
able to access resources of another virtual host.

Rule: security

The server SHOULD verify that the client has permission to access the specified virtual host.

Rule: behavior

When the client uses the insist option, the server MUST NOT respond with a Connection.Redirect control.
If it cannot accept the client's connection request it should respond by closing the connection with a suitable
reply code.

123

Control Classes

Control: connecti on. open- ok

Name

open- ok

Code

0x8

An AMQP client MUST handle incoming connection.open-ok controls.

This control signals to the client that the connection is ready for use.

Arguments

Name

Type Description

known- host s

angp- host - |aternate hosts which may be used in the case of failure |optional
array

Specifiesan array of equivalent or alternative hoststhat the server knows about, which will normally
include the current server itself. Each entry inthe array will bein theform of an IP addressor DNS
name, optionally followed by a colon and a port number. Clients can cache this information and
use it when reconnecting to a server after afailure. Thisfield may be empty.

124

Control Classes

Control: connecti on. redirect

Name redirect
Code 0x9

An AMQP client MUST handle incoming connection.redirect controls.

This control redirects the client to another server, based on the requested virtual host and/or capabilities.

Arguments

Name Type Description

host angp- host - |server to connect to required
url
Specifies the server to connect to.

known- host s |angp- host - |alternate hoststo try in case of failure optional
array
An array of equivalent or aternative hosts that the server knows about.

Rules

Rule: usage

When getting the connection.redirect control, the client SHOULD reconnect to the host specified, and if that
host is not present, to any of the hosts specified in the known-hosts list.

125

Control Classes

Control: connecti on. heart beat

Name hear t beat
Code Oxa

The heartbeat control may be used to generate artificial network traffic when a connection isidle. If a connection is
idle for more than twice the negotiated heartbeat delay, the peers MAY be considered disconnected.

126

Control Classes

Control: connecti on. cl ose

Name cl ose
Code Oxb
Response close-ok

An AMQP client MUST handle incoming connection.close controls.
An AMQP server MUST handle incoming connection.close controls.

This control indicates that the sender wants to close the connection. The reason for close is indicated with the reply-
code and reply-text. The channel this control issent on MAY be used to indicate which channel caused the connection
to close.

Arguments

Name Type Description

repl y-code |cl ose-code |thenumericreply code ‘required
Indicates the reason for connection closure.

reply-text |str8 the localized reply text ‘optional
This text can be logged as an aid to resolving issues.

127

Control Classes

Control: connecti on. cl ose- ok

Name cl ose- ok
Code Oxc

An AMQP client MUST handle incoming connection.close-ok controls.
An AMQP server MUST handle incoming connection.close-ok controls.

This control confirms a connection.close control and tells the recipient that it is safe to release resources for the
connection and close the socket.

Rules

Rule: reporting

A peer that detects a socket closure without having received a Close-Ok handshake control SHOULD log
the error.

128

Control Classes

Class: sessi on

CodeName Description

Ox2|sessi on session controls

An AMQP server MUST implement the session class.
An AMQP client MUST implement the session class.
An AMQP sender MUST implement the session class.

An AMQP receiver MUST implement the session class.

Methods

Code |Name

Ox1 attach(name: name, force: bit)

attach to the named session

0x2 attached(name: name)

confirm attachment to the named session

0x3 detach(name: name)

detach from the named session

0x4 detached(name: name, code: detach-code)

confirm detachment from the named session

0x5 reguest-timeout(timeout: uint32)

reguests the execution timeout be changed

0x6 timeout(timeout: uint32)

the granted timeout

ox7 command-point(command-id: sequence-no, command-offset: uint64)

the command id and byte offset of subsequent data

0x8 expected(commands. commands, fragments. command-fragments)

informs the peer of expected commands

0x9 confirmed(commands: commands, fragments: command-fragments)

notifies of confirmed commands

Oxa |completed(commands: commands, timely-reply: bit)

notifies of command completion

Oxb known-compl eted(commands: commands)

Inform peer of which commands are known to be completed

Oxc flush(expected: bit, confirmed: bit, completed: bit)

reguests a session.completed

Ooxd gap(commands. commands)

indicates missing segmentsin the stream

129

Control Classes

A session is a named interaction between two peers. Session names are chosen by the upper layers and may be used
indefinitely. The model layer may associate long-lived or durable state with a given session name. The session layer
provides transport of commands associated with this interaction.

The controls defined within this class are specified in terms of the "sender" of commands and the "receiver" of
commands. Since both client and server send and receive commands, the overall session dialog is symmetric, however
the semantics of the session controls are defined in terms of a single sender/receiver pair, and it is assumed that the
client and server will each contain both a sender and receiver implementation.

Rules

Rule: attachment

The transport MUST be attached in order to use any control other than "attach", "attached", "detach",
or "detached". A peer receiving any other control on a detached transport MUST discard it and send a
session.detached with the "not-attached" reason code.

130

Control Classes

Domain: sessi on. header

The session header appears on commands after the class and command id, but prior to command arguments.

Struct Type

Size Packing

1 1

Fields

Name Type Description

sync bi t reguest notification of completion optional
Reguest notification of completion for this command.

131

Control Classes

Domain: sessi on. conmmand- f r agnment

Struct Type

Size Packing

0 0

Fields

Name Type Description

command-id |sequence-no required
byt e-ranges |byt e-ranges required

132

Control Classes

Domain: sessi on. nane

Name Type Description

nane vbi n16 opague session name

The session name uniquely identifies an interaction between two peers. It is scoped to a given authentication principal.

133

Control Classes

Domain: sessi on. det ach- code

Name Type Description
det ach-code |ui nt 8 reason for detach
Valid Values
Value|Name Description
O|nor nal The session was detached by request.
1|sessi on- The session is currently attached to another transport.
busy
2|transport- |Thetransportiscurrently attached to another session.
busy
3|not - The transport is not currently attached to any session.
attached
4 lunknown- i ds |Command data was received prior to any use of the command-point control.

134

Control Classes

Domain: sessi on. conmands

Name Type Description
comrands sequence- identifies a set of commands
set

135

Control Classes

Domain: sessi on. conmmand- f ragnment s

Name Type Description
command- array an array of values of type command-fragment
fragments

136

Control Classes

Control: sessi on. att ach

Name attach
Code 0x1

Response attached
Response detached

An AMQP server MUST handle incoming session.attach controls.
An AMQP client MAY handle incoming session.attach controls.

Requests that the current transport be attached to the named session. Success or failure will be indicated with an
attached or detached response. This control isidempotent.

Arguments

Name Type Description

nane nane the session name ‘required
I dentifies the session to be attached to the current transport.

force bi t force attachment to a busy session ‘optional
If set then a busy session will be forcibly detached from its other transport and reattached to the
current transport.

Rules

Rule: one-transport-per-session

A session MUST NOT be attached to more than one transport at atime.

Rule: one-session-per-transport

A transport MUST NOT be attached to more than one session at atime.

Rule: idempotence

Attaching a session to its current transport MUST succeed and result in an attached response.

Rule: scoping

Attachment to the same session name from distinct authentication principals MUST succeed.

137

Control Classes

Control: sessi on. att ached

Name

att ached

Code

0x2

An AMQP server MUST handle incoming session.attached controls.

An AMQP client MUST handle incoming session.attached controls.

Confirms successful attachment of the transport to the named session.

Arguments
Name Type Description
name name the session name required

I dentifies the session now attached to the current transport.

138

Control Classes

Control: sessi on. det ach

Name det ach
Code 0x3
Response detached

An AMQP server MUST handle incoming session.detach controls.

An AMQP client MUST handle incoming session.detach controls.

Detaches the current transport from the named session.

Arguments
Name Type Description
nane nane the session name required

Identifies the session to detach.

139

Control Classes

Control: sessi on. det ached

Name

det ached

Code

0x4

An AMQP server MUST handle incoming session.detached controls.

An AMQP client MUST handle incoming session.detached controls.

Confirms detachment of the current transport from the named session.

Arguments

Name Type Description

name name the session name ‘required
I dentifies the detached session.

code det ach- code |thereason for detach ‘required

I dentifies the reason for detaching from the named session.

140

Control Classes

Control: sessi on. request -ti meout

Name request-ti neout
Code 0x5
Response timeout

An AMQP sender MUST handle incoming session.request-timeout controls.
An AMQP receiver MUST handle incoming session.request-timeout controls.

This control may be sent by either the sender or receiver of commands. It requests that the execution timeout be
changed. Thisisthe minimum amount of time that a peer must preserve execution state for a detached session.

Arguments

Name Type Description

ti meout ui nt 32 the requested timeout optional
The requested timeout for execution state in seconds. If not set, this control requests that execution
state is preserved indefinitely.

Rules

Rule: maximum-granted-timeout

The handler of this request MUST set his timeout to the maximum allowed value less than or equal to the
requested timeout, and MUST convey the chosen timeout in the response.

141

Control Classes

Control: sessi on. ti neout

Name ti meout
Code 0x6

An AMQP sender MUST handle incoming session.timeout controls.
An AMQP receiver MUST handle incoming session.timeout controls.

This control may be sent by the either the sender or receiver of commands. It is a one-to-one reply to the request-
timeout control that indicates the granted timeout for execution state.

Arguments
Name Type Description
ti meout ui nt 32 the execution timeout optional

The timeout for execution state. If not set, then execution state is preserved indefinitely.

142

Control Classes

Control: sessi on. conmmand- poi nt

Name

conmand- poi nt

Code

Ox7

An AMQP receiver MUST handle incoming session.command-point controls.

Thiscontrol issent by the sender of commands and handled by the receiver of commands. This establishesthe sequence
numbers associated with al subsequent command data sent from the sender to the receiver. The subsequent command
datawill be numbered starting with the values supplied in this control and proceeding sequentialy. This must be used
at least once prior to sending any command data on newly attached transports.

Arguments

Name Type Description

command-i d |sequence- no |the command-id of the next command required
conmand- ui nt 64 the byte offset within the command required
of f set

Rules

Rule: newly-attached-transports

If command data is sent on a newly attached transport the session MUST be detached with an "unknown-
id" reason-code.

Rule: zero-offset

If the offset is zero, the next data frame MUST have the first-frame and first-segment flags set. Violation
of thisisaframing error.

Rule: nonzero-offset

If the offset is nonzero, the next data frame MUST NOT have both the first-frame and first-segment flag
set. Violation of thisisaframing error.

143

Control Classes

Control: sessi on. expect ed

Name expect ed
Code 0x8

An AMQP sender MUST handle incoming session.expected controls.

This control is sent by the receiver of commands and handled by the sender of commands. It informs the sender of
what commands and command fragments are expected at the receiver. This control isonly sent in response to aflush
control with the expected flag set. The expected control is never sent spontaneously.

Arguments

Name Type Description

conmands conmmands expected commands required

fragments command- expected fragments optional
fragments

Rules

Rule: include-next-command

The set of expected commands MUST include the next command after the highest seen command.

Rule: commands-empty-means-new-session

The set of expected commands MUST have zero elements if and only if the sender holds no execution state
for the session (i.e. it isanew session).

Rule: no-overlaps

If acommand-id appearsin the commands field, it MUST NOT appear in the fragments field.

Rule: minimal-fragments

When choiceis permitted, acommand MUST appear in the commandsfield rather than the fragments field.

144

Control Classes

Control: sessi on. confi r ned

Name confirnmed
Code 0x9

An AMQP sender MUST handle incoming session.confirmed controls.

This control is sent by the receiver of commands and handled by the sender of commands. This sends the set of
commandsthat will definitely be completed by this peer to the sender. This excludes commands known by the receiver
to be considered confirmed or complete at the sender.

This control must be sent if the partner requests the set of confirmed commands using the session.flush control with
the confirmed flag set.

This control may be sent spontaneously. One reason for separating confirmation from completionisfor large persistent
messages, where the receipt (and storage to a durable store) of part of the message will result in less data needing to
be replayed in the case of transport failure during transmission.

A simple implementation of an AMQP client or server may be implemented to take no action on receipt of
session.confirmed controls, and take action only when receiving session.completed controls.

A simple implementation of an AMQP client or server may be implemented such that it never spontaneously sends
session.confirmed and that when requested for the set of confirmed commands (via the session.flush control) it
responds with the same set of commands as it would to when the set of completed commands was requested (trivially
all completed commands are confirmed).

Arguments

Name Type Description

conmands conmands entirely confirmed commands optional

fragments conmand- partially confirmed commands optional
fragments

Rules

Rule: durability

If acommand has durableimplications, it MUST NOT be confirmed until the fact of the command has been
recorded on durable media.

Rule: no-overlaps

If acommand-id appearsin the commands field, it MUST NOT appear in the fragments field.

Rule: minimal-fragments

When choiceis permitted, acommand MUST appear in the commandsfield rather than the fragments field.

Rule: exclude-known-complete

Command-ids included in prior known-complete replies MUST be excluded from the set of all confirmed
commands.

145

Control Classes

Control: sessi on. conpl et ed

Name conpl et ed
Code Oxa

An AMQP sender MUST handle incoming session.completed controls.

This control is sent by the receiver of commands, and handled by the sender of commands. It informs the sender of
all commands completed by the receiver. This excludes commands known by the receiver to be considered complete
at the sender.

Arguments

Name Type Description

conmands conmmands completed commands ‘optional
The ids of all completed commands. This excludes commands known by the receiver to be
considered compl ete at the sender.

timely- bi t ‘optional

reply If set, the sender is no longer free to delay the known-completed reply.

Rules

Rule: known-completed-reply

The sender MUST eventually reply with a known-completed set that covers the completed ids.

Rule: delayed-reply

The known-complete reply MAY be delayed at the senders discretion if the timely-reply field is not set.

Rule: merged-reply

Multiple replies may be merged by sending a single known-completed that includes the union of the merged
command-id sets.

Rule: completed-implies-confirmed

The sender MUST consider any completed commands to also be confirmed.

Rule: exclude-known-complete

Command-ids included in prior known-complete replies MUST be excluded from the set of all completed
commands.

146

Control Classes

Control: sessi on. known- conpl et ed

Name known- conpl et ed
Code Oxb

An AMQP receiver MUST handle incoming session.known-completed controls.

This control is sent by the sender of commands, and handled by the receiver of commands. It is sent in reply to one
or more completed controls from the receiver. It informs the receiver that commands are known to be completed by
the sender.

Arguments
Name Type Description
conmands conmmands commands known to be complete optional
The set of completed commands for one or more session.completed controls.
Rules

Rule: stateless

The sender need not keep state to generate thisreply. It is sufficient to reply to any completed control with
an exact echo of the completed ids.

Rule: known-completed-implies-known-confirmed

The receiver MUST treat any of the specified commands to be considered by the sender as confirmed as
well as completed.

147

Control Classes

Control: sessi on. fl ush

Name flush
Code Oxc

An AMQP receiver MUST handle incoming session.flush controls.

This control is sent by the sender of commands and handled by the receiver of commands. It requests that the receiver
produce the indicated command sets. The receiver should issue the indicated sets at the earliest possible opportunity.

Arguments

Name Type Description

expect ed bi t reguest notification of expected commands optional
confirned bi t request notification of confirmed commands optional
conpl et ed bi t reguest notification of completed commands optional

148

Control Classes

Control: sessi on. gap

Name gap
Code Ooxd

An AMQP receiver MUST handle incoming session.gap controls.

This control is sent by the sender of commands and handled by the receiver of commands. It sends command ranges
for which there will be no further data forthcoming. The receiver should proceed with the next available commands
that arrive after the gap.

Arguments

Name Type Description

conmands conmmands optional
The set of command-ids that are contained in this gap.

Rules

Rule: gap-confirmation-and-completion

The command-ids covered by a session.gap MUST be added to the completed and confirmed sets by the
receiver.

Rule: aborted-commands

If asession.gap coversapartially received command, thereceiving peer MUST treat the command as aborted.

Rule: completed-or-confirmed-commands

If asession.gap covers a completed or confirmed command, the receiving peer MUST continue to treat the
command as completed or confirmed.

149

10. Command Classes

Class: executi on

CodeName Description

Ox3|execution execution commands

An AMQP server MUST implement the execution class.

An AMQP client MUST implement the execution class.

Methods

Code |Name

Ox1 sync()

request notification of completion for issued commands

0x2 result(command-id: sequence-no, vaue: struct32)

carries execution results

0x3 exception(error-code: error-code, command-id: sequence-no, class-code: uint8, command-code: uint8,
field-index: uint8, description: strl6, error-info: map)

notifies a peer of an execution error

The execution class provides commands that carry execution information about other model level commands.

150

Command Classes

Domain: executi on. error - code

Name Type Description
error-code |uint16
Valid Values
Value|Name Description
403 |unaut hor i zedThe client attempted to work with a server entity to which it has no access due
access to security settings.
404 |not - f ound The client attempted to work with a server entity that does not exist.
405 |r esour ce- Theclient attempted to work with aserver entity to which it hasno access because
| ocked another client isworking with it.
406 |pr econdi t i onTheclient requested acommand that was not allowed because some precondition
failed failed.
408|r esour ce- A server entity the client is working with has been deleted.
del et ed
409(i | | egal - The peer sent acommand that is not permitted in the current state of the session.
state
503|conmand- The command segments could not be decoded.
invalid
506|r esour ce- The client exceeded its resource alocation.
limt-
exceeded
530 (|not - al | owed | The peer tried to use a command a manner that is inconsistent with the rules
described in the specification.
531|i I | egal - The command argument is malformed, i.e. it does not fall within the specified
ar gunent domain. The illegal-argument exception can be raised on execution of any
command which has domain valued fields.
540|not - The peer tried to use functionality that is not implemented in its partner.
i mpl enent ed
541|i nternal - The peer could not complete the command because of an internal error. The peer
error may require intervention by an operator in order to resume normal operations.
542|i nval i d- An invalid argument was passed to a command, and the operation could not
ar gument proceed. Aninvalid argument isnot illegal (seeillegal-argument), i.e. it matches

the domain definition; however the particular value isinvalid in this context.

151

Command Classes

Command: executi on. sync

Name sync
Code 0x1

An AMQP server MUST handle incoming execution.sync commands.
An AMQP client MUST handle incoming execution.sync commands.

This command is complete when al prior commands are compl eted.

152

Command Classes

Command: execution.result

Name

resul t

Code

0x2

An AMQP server MUST handle incoming execution.result commands.

An AMQP client MUST handle incoming execution.result commands.

This command carries data resulting from the execution of a command.

Arguments

Name Type Description

command-id [sequence-no required
val ue struct 32 optional

153

Command Classes

Command: execut i on. excepti on

Name exception
Code 0x3

An AMQP client MUST handle incoming execution.exception commands.
An AMQP server MUST handle incoming execution.exception commands.

This command informs a peer of an execution exception. The command-id, when given, correlates the error to a
specific command.

Arguments
Name Type Description
error-code |error-code |error codeindicating the type of error required
command-id |sequence-no |exceptiona command optional
The command-id of the command which caused the exception. If the exception was not caused by
a specific command, thisvalue is not set.
cl ass-code |uint8 the class code of the command whose execution gave rise| optional
to the error (if appropriate)
conmand- uint8 the class code of the command whose execution gave rise|optional
code to the error (if appropriate)
field-index|uint8 index of the exceptional field optional
The zero based index of the exceptional field within the arguments to the exceptional command. If
the exception was not caused by a specific field, this value is not set.
description|strl6 ‘descri ptive text on the exception ‘optional
The description provided isimplementation defined, but MUST be in the language appropriate for
the selected locale. Theintention is that this description is suitable for logging or alerting output.
error-info [map ‘map to carry additional information about the error ‘optional

154

Command Classes

Class: nessage

CodeName Description

Ox4|nmessage message transfer

An AMQP server MUST implement the message class.

An AMQP client MUST implement the message class.

Methods
Code |Name
0x1 transfer(destination: destination, accept-mode: accept-mode, acquire-mode: acquire-mode)
transfer a message
0x2 accept(transfers: session.commands)
reject amessage
0x3 reject(transfers: on.commands, code: reject-code, text: str8)
reject amessage
0x4 release(transfers. session.commands, set-redelivered: hit)
release a message
0x5 acquire(transfers: on.commands)
acquire messages for consumption
0x6 resume(destination: destination, resume-id: resume-id)
resume an interrupted message transfer
0x7 subscribe(queue: queue.name, destination: destination, accept-mode: accept-mode, acquire-mode: acquire-
mode, exclusive: bit, resume-id: resume-id, resume-ttl: uint64, arguments: map)
start a queue subscription
0x8 cancel (destination: destination)
end a queue subscription
0x9 set-flow-mode(destination: destination, flow-mode: flow-mode)
set the flow control mode
Oxa |flow(destination: destination, unit: credit-unit, value: uint32)
control message flow
Oxb flush(destination: destination)
force the sending of available messages
Oxc stop(destination: destination)

stop the sending of messages

The message class provides commands that support an industry-standard messaging model.

155

Command Classes

Transfer States

START:
The nmessage has yet to be sent to the recipient.
NOT- ACQUI RED:

The nmessage has been sent to the recipient, but is not
acquired by the recipient.

ACQUI RED:
The nessage has been sent to and acquired by the recipient.
END:

The transfer is conplete.

State Transitions

*: TRANSFER (accept - node=none) *: TRANSFER (acqui r e- node=pr e- acqui r ed)

Grammar:

message = *: TRANSFER [R ACQURE] [R ACCEPT / R REJECT / R RELEASE]
*: RESUME

*: SET- FLOW MODE

*: FLOW

*: STOP

C: SUBSCRI BE

C: CANCEL

C. FLUSH

156

Command Classes

Rules

Rule: persistent-message

The server SHOULD respect the delivery-mode property of messages and SHOULD make a best-effort to
hold persistent messages on a reliable storage mechanism.

Scenario: Send apersistent messageto queue, stop server, restart server and then verify whether message
isstill present. Assumes that queues are durable. Persistence without durable queues makes no sense.

Rule: no-persistent-message-discard

The server MUST NOT discard a persistent message in case of a queue overflow.

Scenario: Create a queue overflow situation with persistent messages and verify that messages do not
get lost (presumably the server will write them to disk).

Rule: throttling

The server MAY use the message.flow command to slow or stop a message publisher when necessary.

Rule: non-persistent-message-overflow

The server MAY overflow non-persistent messages to persistent storage.

Rule: non-persistent-message-discard

The server MAY discard or dead-letter non-persistent messages on a priority basisif the queue size exceeds
some configured limit.

Rule: min-priority-levels

The server MUST implement at least 2 priority levels for messages, where priorities 0 and 9 are treated as
two distinct levels.

Rule: priority-level-implementation

The server SHOULD implement distinct priority levelsin the following manner:

If the server implementsn distinct prioritiesthen priorities0to 5 - ceiling(n/2) should be treated equivalently
and should be the lowest effective priority. The priorities 4 + floor(n/2) should be treated equivaently and
should be the highest effective priority. The priorities (5 - ceiling(n/2)) to (4 + floor(n/2)) inclusive must
be treated as distinct priorities.

Thus, for example, if 2 distinct priorities areimplemented, then levels 0 to 4 are equivaent, and levels5t0 9
are equivaent and levels 4 and 5 are distinct. If 3 distinct priorities are implements the 0 to 3 are equivalent,
5to 9 areequivalent and 3, 4 and 5 are distinct.

This scheme ensures that if two priorities are distinct for a server which implements m separate priority
levelsthey are also distinct for a server which implements n different priority levels where n > m.

157

Command Classes

Rule: priority-delivery

The server MUST deliver messages of the same priority in order irrespective of their individual persistence.

Scenario: Send a set of messages with the same priority but different persistence settings to a queue.
Subscribe and verify that messages arrive in same order as originally published.

158

Command Classes

Domain: message. del i very-properties

Struct Type

Size Packing

4 2

Fields

Name Type Description

di scar d- bi t controls discard of unroutable messages optional

unr out abl e

If set on a message that is not routable the broker can discard it. If not set, an unroutable message
should be handled by reject when accept-mode is explicit; or by routing to the aternate-exchange
if defined when accept-mode is none.

i medi at e

bi t Consider message unroutable if it cannot be processed

immediately

optional

If the immediate flag is set to true on a message transferred to a Server, then the message should
be considered unroutable (and not delivered to any queues) if, for any queue that it is to be routed
to according to the standard routing behavior, there is not a subscription on that queue able to
receive the message. Thetreatment of unroutable messagesis dependent on the value of the discard-
unroutable flag.

Theimmediate flag isignored on transferred to a Client.

redel i ver ed

bi t redelivery flag optional

This boolean flag indicates that the message may have been previously delivered to this or another
client.

If the redelivered flag is set on transfer to a Server, then any delivery of the message from that
Server to a Client must also have the redelivered flag set to true.

priority delivery- message priority, 0to 9 required
priority
Message priority, which can be between 0 and 9. Messages with higher priorities may be delivered
before those with lower priorities.

delivery- delivery- message persistence requirement required

node node
The delivery mode may be non-persistent or persistent.

ttl ui nt 64 ‘timetolivein ms ‘optional
Duration in milliseconds for which the message should be considered "live". If thisis set then a
message expiration time will be computed based on the current time plus this value. M essages that
live longer than their expiration time will be discarded (or dead |ettered).

ti mestanp dateti me ‘messagetimeﬂamp ‘optional

159

Command Classes

Name

Type ‘ Description

The timestamp is set by the broker on arrival of the message.

expiration

datetinme ‘message expiration time ‘optional

The expiration header assigned by the broker. After receiving the message the broker setsexpiration
to the sum of the ttl specified in the publish command and the current time. (ttl=expiration -
timestamp)

exchange

exchange. narferigi nating exchange ‘optional

I dentifies the exchange specified in the destination field of the message.transfer used to publish the
message. ThisMUST be set by the broker upon receipt of a message.

routi ng- key

str8 ‘ message routing key ‘optional

The value of the key determines to which queue the exchange will send the message. The way in
which keys are used to make this routing decision depends on the type of exchange to which the
message is sent. For example, a direct exchange will route a message to a queue if that queue is
bound to the exchange with a binding-key identical to the routing-key of the message.

resune-id

resune-id ‘global id for message transfer ‘optional

When aresume-id is provided the recipient MAY use it to retain message data should the session
expire while the message transfer is still incompl ete.

resune-ttl

ui nt 64 ‘ttl in msfor interrupted message data ‘optional

When aresume-ttl is provided the recipient MAY use it has aguideline for how long to retain the
partially complete data when aresume-id is specified. If no resume-id is specified then this value
should be ignored.

Rules

Rule: implementation

The server MUST try to signal redelivered messages when it can. When redelivering a message that was not
successfully accepted, the server SHOULD deliver it to the original client if possible.

Scenario: Create a shared queue and publish a message to the queue. Subscribe using explicit accept-
mode, but do not accept the message. Close the session, reconnect, and subscribe to the queue again. The
message MUST arrive with the redelivered flag set.

Rule: hinting

The client should not rely on the redelivered field to detect duplicate messages where publishers may
themselves produce duplicates. A fully robust client should be able to track duplicate received messages on
non-transacted, and locally-transacted sessions.

Rule: ttl-decrement

If amessageistransferred between brokersbefore delivery to afinal subscriber thettl should be decremented
before peer to peer transfer and both timestamp and expiration should be cleared.

160

Command Classes

Domain: message. f ragnent - properties

These properties permit the transfer of message fragments. These may be used in conjunction with byte level flow
control to limit the rate at which large messages are received. Only the first fragment carries the delivery-properties
and message-properties. Syntactically each fragment appears as acomplete message to the lower layers of the protocol,
however the model layer is required to treat all the fragments as a single message. For example all fragments must
be delivered to the same client. In pre-acquired mode, no message fragments can be delivered by the broker until the
entire message has been received.

Struct Type

Size Packing

4 2

Fields

Name Type Description

first bi t |default: 1
True if this fragment contains the start of the message, false otherwise.

| ast bi t | |default: 1
True if this fragment contains the end of the message, false otherwise.

fragrrent - ui nt 64 ‘ ‘optional

Sl ze Thisfield may optionally contain the size of the fragment.

161

Command Classes

Domain: message. reply-to

The reply-to domain provides a simple address structure for replying to to a message to a destination within the same
virtual-host.

Struct Type

Size Packing

2 2

Fields

Name Type Description

exchange exchange. nanthe name of the exchange to reply to optional
routing-key |str8 the routing-key to use when replying optional

162

Command Classes

Domain: nessage. nessage- properties

Struct Type

Size Packing

4 2

Fields

Name Type Description

cont ent - ui nt 64 length of the body segment in bytes ‘optional
length The length of the body segment in bytes.

message-id |uuid ‘application message identifier ‘optional

Message-id is an optional property of UUID type which uniquely identifies a message within the
message system. The message producer isusually responsiblefor setting the message-id. The server
MAY discard a message as a duplicate if the value of the message-id matches that of a previously
received message. Duplicate messages MUST till be accepted if transferred with an accept-mode
of "explicit".

correl ati on-
id

vbi n16 ‘application correlation identifier ‘optional

This is a client-specific id that may be used to mark or identify messages between clients. The
server ignoresthisfield.

reply-to reply-to ‘destination toreply to ‘optional
The destination of any message that is sent in reply to this message.

cont ent - str8 ‘MIME content type ‘optional

type The RFC-2046 MIME type for the message content (such as "text/plain”). This is set by the
originating client.

content - str8 ‘MIME content encoding ‘optional

encodi ng The encoding for character-based message content. Thisis set by the originating client. Examples
include UTF-8 and 1SO-8859-15.

user-id vbi n16 ‘creating user id ‘optional
The identity of the user responsible for producing the message. The client sets this value, and it
is authenticated by the broker.

app-id vbi n16 ‘creating application id ‘optional
Theidentity of the client application responsible for producing the message.

appl i cation-map ‘application specific headers table ‘optional

headers

Thisisacollection of user-defined headers or properties which may be set by the producing client
and retrieved by the consuming client.

Rules

Rule: unique

A message-id MUST be unique within a given server instance. A message-id SHOULD be globally unique
(i.e. across different systems).

163

Command Classes

Rule: immutable

A message ID is immutable. Once set, a message-id MUST NOT be changed or reassigned, even if the
message is replicated, resent or sent to multiple queues.

Rule: authentication

The server MUST produce an unauthorized-access exception if the user-id field is set to aprinciplefor which
the client is not authenticated.

164

Command Classes

Domain: message. desti nati on

Name

destinati on

Type

Description

str8

destination for a message

Specifies the destination to which the message is to be transferred.

165

Command Classes

Domain: message. accept - node

Name Type Description

accept - node |ui nt 8 indicates a confirmation mode

Controls how the sender of messages is notified of successful transfer.

Valid Values

Value|Name Description

Olexplicit Successful transfer issignaled by message.accept. An acquired message (whether
acquisition was implicit as in pre-acquired mode or explicit as in not-acquired
mode) is not considered transferred until a message.accept that includes the
transfer command is received.

1l|none Successful transfer is assumed when accept-mode is "pre-acquired”. Messages
transferred with an accept-mode of "not-acquired” cannot be acquired when
accept-mode is "none".

166

Command Classes

Domain: message. acqui r e- node

Name Type Description
acquire- uint8 indicates the transfer mode
node

Indicates whether a transferred message can be considered as automatically acquired or whether an explicit request
isnecessary in order to acquireit.

Valid Values
Value|Name Description
O|pre- the message is acquired when the transfer starts
acquired
1|not - the message is not acquired when it arrives, and must be explicitly acquired by
acquired the recipient

167

Command Classes

Domain: message. r ej ect - code

Name Type Description
reject-code |uint16 reject code for transfer

Code specifying the reason for a message reject.

Valid Values

Value|Name Description

O|unspeci fi ed |Rejected for an unspecified reason.

1llunrout abl e |Dédivery was attempted but there were no queues which the message could be
routed to.

2|i mredi at e The regjected message had the immediate flag set to true, but at the time of the
transfer at least one of the queues to which it was to be routed did not have any

subscriber able to take the message.

168

Command Classes

Domain: message. resune-i d

Name Type Description

resune-id stri16

A resume-id servestoidentify partially transferred message content. Theid ischosen by the sender, and must be unique
to agiven user. A resume-id is not expected to be unique across users.

169

Command Classes

Domain: message. del i ver y- node

Name Type Description
delivery- uint8 indicates whether a message should be treated as transient or durable
node

Used to set the reliability requirements for a message which is transferred to the server.

Valid Values

Value

Name

Description

1

non-
per si st ent

A non-persistent message may be lost in event of afailure, but the nature of the
communication is such that an occasional message loss is tolerable. Thisis the
lowest overhead mode. Non-persistent messages are delivered at most once only.

per si st ent

A persistent message is onewhich must be stored on a persistent medium (usually
hard drive) at every stage of delivery so that it will not be lost in event of failure
(other than of the medium itself). This is normally accomplished with some
additional overhead. A persistent message may be delivered more than once if
there is uncertainty about the state of its delivery after afailure and recovery.

170

Command Classes

Domain: message. del i very-priority

Name Type Description
delivery- uint8 indicates the desired priority to assign to a message transfer
priority

Used to assign a priority to a message transfer. Priorities range from 0 (lowest) to 9 (highest).

Valid Values
Value|Name Description

0|l onest Lowest possible priority message.

1|l ower Very low priority message

2|l ow Low priority message.

3|bel ow Below average priority message.
aver age

4 medi um Medium priority message.

5|above- Above average priority message
aver age

6 |hi gh High priority message

7|hi gher Higher priority message

8|very-high Very high priority message.

9 |hi ghest Highest possible priority message.

171

Command Classes

Domain: message. f | ow node

Name Type Description
fl ow node uint8 the flow-mode for allocating flow credit
Valid Values
Value|Name Description
Olcredit Credit based flow control.
1|wi ndow Window based flow control.

172

Command Classes

Domain: message. credit-unit

Name Type Description
credit-unit |uint8 specifies the unit of credit balance
Valid Values
Value|Name Description
O|message Indicates a value specified in messages.
1l|byte Indicates a value specified in bytes.

173

Command Classes

Command: nessage. t r ansf er

Name transfer
Code Ox1

An AMQP server MUST handle incoming message.transfer commands.
An AMQP client MUST handle incoming message.transfer commands.

This command transfers a message between two peers. When a client uses this command to publish a message to a
broker, the destination identifies a specific exchange. The message will then be routed to queues as defined by the
exchange configuration. The client may request a broker to transfer messagesto it, from a particular queue, by issuing
a subscribe command. The subscribe command specifies the destination that the broker should use for any resulting
transfers.

Arguments

Name Type Description

destination |desti nati on |message destination ‘optional
Specifies the destination to which the message is to be transferred.

accept - node |accept - node ‘required
Indicates whether message.accept, session.complete, or nothing at al is required to indicate
successful transfer of the message.

acquire- acquire- required

node node
Indicates whether or not the transferred message has been acquired.

Segments

Following the command segment, the following segments may follow.
header

This segment is optional.

The header segment consists of at most one of each of the following entries:
» delivery-properti es [optional].

» fragment - properties [optional].

* nessage- properti es [optional].

body

This segment is optional.

The body segment consists of opaque binary data (i.e. the message body).

174

Command Classes

Rules

Rule: transactional-publish

If atransfer to an exchange occurs within a transaction, then it is not available from the queue until the
transaction commits. It is not specified whether routing takes place when the transfer is received or when

the transaction commits.

Rule: blank-destination

The server MUST accept a blank destination to mean the default exchange.

Exceptions

Exception: nonexistent-exchange

Error: not - f ound

If the destination refers to an exchange that does not exist, the peer MUST raise a session exception.

175

Command Classes

Command: message. accept

Name accept
Code 0x2

An AMQP server MUST handle incoming message.accept commands.
An AMQP client MUST handle incoming message.accept commands.

Acceptsthe message. Once atransfer isaccepted, the command-id may no longer be referenced from other commands.

Arguments

Name Type Description

transfers sessi on. comrands required
| dentifies the messages previously transferred that should be accepted.

Rules

Rule: acquisition

The recipient MUST have acquired a message in order to accept it.

176

Command Classes

Command: nessage. r ej ect

Name reject
Code 0x3

An AMQP server MUST handle incoming message.reject commands.
An AMQP client MUST handle incoming message.reject commands.

Indicates that the message transfers are unprocessable in some way. A server may reject amessageif it is unroutable.
A client may reject amessage if it isinvalid. A message may be rejected for other reasons as well. Once atransfer is
rejected, the command-id may no longer be referenced from other commands.

Arguments
Name Type Description
transfers sessi on. comrands ‘required

I dentifies the messages previously transferred that should be rejected.
code rej ect-code ‘ ‘required
Code describing the reason for rejection.

t ext str8 ‘informational text for message reject ‘optional

Text describing the reason for rejection.

Rules

Rule: alternate-exchange

When a client rejects a message, the server MUST deliver that message to the alternate-exchange on the
queue from which it was delivered. If no alternate-exchange is defined for that queue the broker MAY
discard the message.

Rule: acquisition

The recipient MUST have acquired a message in order to reject it. If the message is not acquired any reject
MUST be ignored.

177

Command Classes

Command: nessage. r el ease

Name rel ease
Code 0x4

An AMQP server MUST handle incoming message.rel ease commands.
An AMQP client MAY handle incoming message.rel ease commands.

Release previously transferred messages. When acquired messages are rel eased, they become availablefor acquisition
by any subscriber. Once atransfer is released, the command-id may no longer be referenced from other commands.

Arguments

Name Type Description

transfers sessi on. comrands ‘required
Indicates the messages to be released.

set - bi t mark the rel eased messages as redelivered ‘optional

redelivered By setting set-redelivered to true, any acquired messages released to a queue with this command
will be marked as redelivered on their next transfer from that queue. If this flag is not set, then
an acquired message will retain its original redelivered status on the queue. Messages that are not
acquired are unaffected by the value of thisflag.

Rules

Rule: ordering

Acquired messages that have been released MAY subsequently be delivered out of order. Implementations
SHOULD ensure that released messages keep their position with respect to undelivered messages of the
same priority.

178

Command Classes

Command: nessage. acqui re

Name acquire
Code 0x5

An AMQP server MUST handle incoming message.acquire commands.

Acquires previously transferred messages for consumption. The acquired ids (if any) are sent via message.acquired.

Arguments

Name Type Description

transfers sessi on. comands required
I ndicates the messages to be acquired.

Rules

Rule: one-to-one

Each acquire MUST produce exactly one message.acquired even if it is empty.

Result

Struct Type

Size Packing

4 2

Fields

Name Type Description

transfers sessi on. comrands required
Indicates the acquired messages.

179

Command Classes

Command: nessage. resune

Name resume
Code 0x6

An AMQP server MUST handle incoming message.resume commands.
An AMQP client MUST handle incoming message.resume commands.

This command resumes an interrupted transfer. The recipient should return the amount of partialy transferred data
associated with the given resume-id, or zero if there is no data at all. If a non-zero result is returned, the recipient
should expect to receive message fragment(s) containing the remainder of the interrupted message.

Arguments

Name Type Description

destination |destination ‘optional
The destination to which the remaining message fragments are transferred.

resune-id resune-id ‘required
The name of the transfer being resumed.

Rules

Rule: unknown-resume-id

If the resume-id is not known, the recipient MUST return an offset of zero.

Exceptions

Exception: destination-not-found

Error: not - f ound

If the destination does not exist, the recipient MUST close the session.

Result

Struct Type

Size Packing

4 2

Fields

Name Type Description

of f set ui nt 64 optional
Indicates the amount of data already transferred.

180

Command Classes

Command: nessage. subscri be

Name subscri be
Code Ox7

An AMQP server MUST handle incoming message.subscribe commands.

This command asks the server to start a "subscription”, which is a request for messages from a specific queue.
Subscriptions last as long as the session they were created on, or until the client cancels them.

Arguments
Name Type Description
queue gueue. nane ‘required
Specifies the name of the subscribed queue.
destination|destination ‘incoming message destination ‘optiona]
The client specified name for the subscription. This is used as the destination for all messages
transferred from this subscription. The destination is scoped to the session.
accept - node |accept - node ‘ ‘required
The accept-mode to use for messages transferred from this subscription.
acquire- acquire- required
node node
The acquire-mode to use for messages transferred from this subscription.
excl usi ve bi t ‘request exclusive access ‘optional
Request an exclusive subscription. This prevents other subscribers from subscribing to the queue.
resune-id resune-id ‘ ‘optiona]
Requests that the broker use the supplied resume-id when transferring messages for this
subscription.
resunme-ttl |uint64 ‘ ‘optional
Requested duration in milliseconds for the broker use as resume-ttl when transferring messages for
this subscription.
argunent s map ‘argumentsfor vendor extensions ‘optiona]
The syntax and semantics of these arguments depends on the providers implementation.
Rules

Rule: simultaneous-subscriptions

The server SHOULD support at least 16 subscriptions per queue, and ideally, impose no limit except as
defined by available resources.

Scenario: Create a queue and create subscriptions on that queue until the server closes the connection.
Verify that the number of subscriptions created was at |east sixteen and report the total number.

Rule: default-flow-mode

The default flow mode for new subscriptions is window-mode.

181

Command Classes

Rule: initial-credit

Immediately after a subscription is created, the initial byte and message credit for that destination is zero.

Exceptions

Exception: queue-deletion

Error: resour ce-del et ed

Field: queue

If the queue for this subscription is deleted, any subscribing sessions MUST be closed. This exception may
occur at any time after the subscription has been completed.

Exception: queue-not-found

Error: not - f ound

Field: queue

If the queue for this subscription does not exist, then the subscribing session MUST be closed.

Exception: unigue-subscriber-destination

Error: not - al | owed

The client MUST NOT specify a destination that refers to an existing subscription on the same session.

Scenario: Attempt to create two subscriptions on the same session with the same non-empty destination.

Exception: in-use

Error: resour ce-| ocked

The server MUST NOT grant an exclusive subscription to a queue that already has subscribers.

Scenario: Open two connectionsto aserver, and in one connection create a shared (non-exclusive) queue
and then subscribe to the queue. In the second connection attempt to subscribe to the same queue using the
exclusive option.

182

Command Classes

Command: nessage. cance

Name cancel
Code 0x8

An AMQP server MUST handle incoming message.cancel commands.

This command cancels a subscription. Thisdoes not affect already delivered messages, but it does mean the server will
not send any more messages for that subscription. The client may receive an arbitrary number of messagesin between
sending the cancel command and receiving notification that the cancel command is complete.

Arguments

Name Type Description

destination|destination required
Rules

Rule: post-cancel-transfer-resolution

Canceling asubscription MUST NOT affect pending transfers. A transfer made prior to canceling transfersto
the destination MUST be ableto be accepted, released, acquired, or rejected after the subscriptionis canceled.

Exceptions

Exception: subscription-not-found

Error: not - f ound

If the subscription specified by the destination is not found, the server MUST close the session.

183

Command Classes

Command: nessage. set - f | ow node

Name set - fl ow node
Code 0x9

An AMQP server MUST handle incoming message.set-flow-mode commands.
An AMQP client MUST handle incoming message.set-flow-mode commands.

Sets the mode of flow control used for a given destination to either window or credit based flow control. With
credit based flow control, the sender of messages continually maintains its current credit balance with the recipient.
The credit balance consists of two values, a message count, and a byte count. Whenever message data is sent, both
counts must be decremented. If either value reaches zero, the flow of message data must stop. Additional credit
is received via the message.flow command. The sender MUST NOT send partial assemblies. This means that if
there is not enough byte credit available to send a complete message, the sender must either wait or use message
fragmentation (see the fragment-properties header struct) to send the first part of the message data in a complete
assembly. Window based flow control isidentical to credit based flow control, however message transfer completion
implicitly grantsasingle unit of message credit, and the size of the message in byte creditsfor each completed message
transfer. Completion of the transfer command with session.completed is the only way credit is implicitly updated;

message.accept, message.rel ease, message.reject, tx.commit and tx.rollback have no effect on the outstanding credit
balances.

Arguments

Name Type Description

destination |destination optional

fl ow node fl ow node required
The new flow control mode.

Rules

Rule: byte-accounting

The byte count is decremented by the payload size of each transmitted frame with segment type header or
body appearing within a message.transfer command. Note that the payload size is the frame size less the
frame header size.

Rule: mode-switching

Mode switching may only occur if both the byte and message credit balance are zero. There are three
ways for arecipient of messages to be sure that the sender's credit balances are zero: 1) The recipient may
send a message.stop command to the sender. When the recipient receives notification of completion for the
message.stop command, it knowsthat the sender's credit is zero. 2) The recipient may perform the same steps
described in (1) with the message.flush command substituted for the message.stop command. 3) Immediately
after asubscription is created with message.subscribe, the credit for that destination is zero.

Rule: default-flow-mode

Prior to receiving an explicit set-flow-mode command, apeer MUST consider the flow-mode to be window.

184

Command Classes

Command: nessage. f | ow

Name

flow

Code

Oxa

An AMQP server MUST handle incoming message.flow commands.

An AMQP client MUST handle incoming message.flow commands.

This command controls the flow of message data to a given destination. It is used by the recipient of messages to
dynamically match the incoming rate of message flow to its processing or forwarding capacity. Upon receipt of this
command, the sender must add "value" number of the specified unit to the available credit balance for the specified
destination. A value of (OxFFFFFFFF) indicates an infinite amount of credit. This disables any limit for the given unit

until the credit balance is zeroed with message.stop or message.flush.

Arguments

Name Type Description

destination |destination optional

unit credit-unit required
The unit of value.

val ue ui nt 32 optional

If the value is not set then this indicates an infinite amount of credit.

185

Command Classes

Command: nessage. fl ush

Name flush
Code Oxb

An AMQP server MUST handle incoming message.flush commands.

Forces the sender to exhaust his credit supply. The sender's credit will always be zero when this command compl etes.
The command completes when immediately available message data has been transferred, or when the credit supply
is exhausted.

Arguments
Name Type Description
destination|destination optional

186

Command Classes

Command: nessage. st op

Name stop
Code Oxc

An AMQP server MUST handle incoming message.stop commands.
An AMQP client MUST handle incoming message.stop commands.

On receipt of this command, a producer of messages MUST set his credit to zero for the given destination. When
notifying of completion, credit MUST be zero and no further messages will be sent until such atime as further credit
isreceived.

Arguments
Name Type Description
destination |destination optional

187

Command Classes

Class: t x
CodeName Description
Ox5|t x work with standard transactions

An AMQP server SHOULD implement the tx class.

Methods

Code |Name
0ox1 select()
select standard transaction mode

0x2 commit()

commit the current transaction
0x3 rollback()
abandon the current transaction

Standard transactions provide so-called "1.5 phase commit". We can ensure that work is never lost, but there is a
chance of confirmations being lost, so that messages may be resent. Applications that use standard transactions must
be able to detect and ignore duplicate messages.

Grammar:
tx = C. SELECT
/| CCOWM T
/ C: ROLLBACK
Rules

Rule: duplicate-tracking

An client using standard transactions SHOULD be able to track all messages received within a reasonable
period, and thus detect and reject duplicates of the same message. It SHOULD NOT pass these to the
application layer.

188

Command Classes

Command: t x. sel ect

Name sel ect
Code Ox1

An AMQP server MUST handle incoming tx.select commands (if the tx classisimplemented).

This command sets the session to use standard transactions. The client must use this command exactly once on a
session before using the Commit or Rollback commands.

Exceptions

Exception: exactly-once

Error: illegal-state

A client MUST NOT select standard transactions on a session that is already transactional.

Exception: no-dtx

Error: illegal-state

A client MUST NOT select standard transactions on a session that is already enlisted in a distributed
transaction.

Exception: explicit-accepts

Error: not - al | owed

On a session on which tx.select has been issued, a client MUST NOT issue a message.subscribe command
with the accept-mode property set to any value other than explicit. Similarly a tx.select MUST NOT be
issued on a session on which athereis anon cancelled subscriber with accept-mode of none.

189

Command Classes

Command: t x. comm t

Name conmi t
Code 0x2

An AMQP server MUST handle incoming tx.commit commands (if the tx classisimplemented).

This command commits all messages published and accepted in the current transaction. A new transaction starts
immediately after acommit.

In more detail, the commit acts on all messages which have been transferred from the Client to the Server, and on all
acceptances of messages sent from Server to Client. Since the commit acts on commands sent in the same direction
as the commit command itself, there is no ambiguity on the scope of the commands being committed. Further, the
commit will not be completed until all preceding commands which it affects have been compl eted.

Since transactions act on explicit accept commands, the only valid accept-mode for message subscribers is explicit.
For transferring messages from Client to Server (publishing) all accept-modes are permitted.

Exceptions

Exception: select-required

Error: illegal-state

A client MUST NOT issue tx.commit on a session that has not been selected for standard transactions with
tx.select.

190

Command Classes

Command: t x. rol | back

Name rol | back
Code 0x3

An AMQP server MUST handle incoming tx.rollback commands (if the tx class isimplemented).

This command abandons the current transaction. In particular the transfers from Client to Server (publishes) and
accepts of transfers from Server to Client which occurred in the current transaction are discarded. A new transaction
startsimmediately after arollback.

In moredetail, when arollback isissued, any the effects of transferswhich occurred from Client to Server arediscarded.
The Server will issue completion notification for all such transfers prior to the completion of therollback. Similarly the
effects of any message.accept issued from Client to Server prior to theissuance of thetx.rollback will be discarded; and
notification of completion for all such commandswill beissued before the issuance of the completion for the rollback.

After the compl etion of therollback, the client will still hold the messageswhichit hasnot yet accepted (including those
for which accepts were previously issued within the transaction); i.e. the messages remain "acquired”. If the Client
wishes to rel ease those messages back to the Server, then appropriate message.rel ease commands must be issued.

Exceptions

Exception: select-required

Error: illegal-state

A client MUST NOT issue tx.rollback on a session that has not been selected for standard transactions with
tx.select.

191

Command Classes

Class: dt x
CodeName Description
0x6|dt x Demarcates dtx branches

An AMQP server MAY implement the dtx class.

An AMQP client MAY implement the dtx class.

Methods

Code |Name

0x1 |select()

Select dtx mode

0x2 start(xid: xid, join: bit, resume: bit)
Start adtx branch

0x3 end(xid: xid, fail: bit, suspend: bit)
End a dtx branch

0x4 commit(xid: xid, one-phase: bit)

Commit work on dtx branch
0x5 forget(xid: xid)

Discard dtx branch

0x6 get-timeout(xid: xid)

Obtain dtx timeout in seconds

0x7 prepare(xid: xid)

Prepare a dtx branch

0x8 recover()

Get prepared or completed xids

0x9 rollback(xid: xid)

Rollback a dtx branch

Oxa |set-timeout(xid: xid, timeout: uint32)
Set dtx timeout value

This provides the X-Open XA distributed transaction protocol support. It allows a session to be selected for use
with distributed transactions, the transactional boundaries for work on that session to be demarcated and allows the
transaction manager to coordinate transaction outcomes.

Grammar:

C. SELECT *denarcati on
C:. START C. END

dt x- demar cati on
demar cat i on

192

Command Classes

Grammar:

dt x- coordi nati on
coordi nation

command

out cone

one- phase- conmi t
one- phase-rol | back
t wo- phase- conmi t

t wo- phase-rol | back
recovery
recovery-out cone

*coor di nati on
command

/ outcome

| recovery

C: SET- TI MEQUT

[C:. GET- TI MEQUT

one- phase- conmi t

| one-phase-rol | back
/' two- phase-conmmi t

/' two- phase-rol | back
C.COWM T

C: ROLLBACK

C. PREPARE C: COWM T
C. PREPARE C: ROLLBACK
C. RECOVER *recovery- out cone
one- phase- conmi t

| one-phase-rol | back
| C. FORGET

Rules

Rule: transactionality

isNOT transactional.

Enabling XA transaction support on asession requiresthat the server MUST manage transactions demarcated
by start-end blocks. That is to say that on this XA-enabled session, work undergone within transactional
blocksis performed on behalf a transaction branch whereas work performed outside of transactional blocks

193

Command Classes

Domain: dt x. xa-resul t

Struct Type

Size Packing

4 2

Fields

Name Type Description
st atus xa- st at us

required

194

Command Classes

Domain: dt x. xi d

An xid uniquely identifies a transaction branch.

Struct Type

Size Packing

2 2

Fields

Name Type Description

f or mat ui nt 32 implementation specific format code required
gl obal -id vbi n8 global transaction id required
branch-id |vbin8 branch quaifier required

195

Command Classes

Domain: dt x. xa- st at us

Name Type Description
xa- st at us ui nt 16 XA return codes
Valid Values
Value|Name Description
0|xa- ok Normal execution completion (no error).
l|xa- The rollback was caused for an unspecified reason.
r brol | back
2 |xa- A transaction branch took too long.
r bti meout

xa- heur haz |The transaction branch may have been heuristically completed.

xa- heur com |The transaction branch has been heuristically committed.

xa- heur mi x |The transaction branch has been heuristically committed and rolled back.

3
4
5|xa-heurrb |Thetransaction branch has been heuristically rolled back.
6
7

xa-rdonly The transaction branch was read-only and has been committed.

196

Command Classes

Command: dt x. sel ect

Name sel ect
Code Ox1

An AMQP server MAY handle incoming dtx.select commands (if the dtx class is implemented).

This command sets the session to use distributed transactions. The client must use this command at least once on a
session before using XA demarcation operations.

197

Command Classes

Command: dt x. st art

Name start
Code 0x2

An AMQP server MAY handle incoming dtx.start commands (if the dtx classisimplemented).

This command is called when messages should be produced and consumed on behalf a transaction branch identified
by xid.

Arguments

Name Type Description

xi d xi d Transaction xid ‘required
Specifies the xid of the transaction branch to be started.

join bi t ‘Joinwith existing xid flag ‘optional
Indicate whether thisis joining an already associated xid. Indicate that the start appliesto joining
atransaction previously seen.

resune bi t ‘Resumeflag ‘optional
Indicate that the start applies to resuming a suspended transaction branch specified.

Exceptions

Exception: illegal-state

Error: illegal-state
Field: xi d

If the command isinvoked in an improper context (see class grammar) then the server MUST send a session
exception.

Exception: already-known

Error: not - al | owed
Field: xi d

If neither join nor resume is specified is specified and the transaction branch specified by xid has previously
been seen then the server MUST raise an exception.

Exception: join-and-resume

Error: not - al | owed
Field: xid

If join and resume are specified then the server MUST raise an exception.

198

Command Classes

Exception: unknown-xid

Error: not - al | owed

If xid is aready known by the broker then the server MUST raise an exception.

Exception: unsupported

Error: not - i npl erent ed

If the broker does not support join the server MUST raise an exception.

Result

Type: Xarresult
See: Section 10.4.2, “ dtx.xa-result

This confirms to the client that the transaction branch is started or specify the error condition. The value of this field
may be one of the following constants. xa-ok: Normal execution. xa-rbrollback: The broker marked the transaction
branch rollback-only for an unspecified reason. xa-rbtimeout: The work represented by this transaction branch took
too long.

199

Command Classes

Command: dt x. end

Name

end

Code

0x3

An AMQP server MAY handle incoming dtx.end commands (if the dtx classisimplemented).

This command is called when the work done on behalf a transaction branch finishes or needs to be suspended.

Arguments
Name Type Description
xi d xi d Transaction xid ‘required
Specifies the xid of the transaction branch to be ended.
fail bi t ‘Failureflag ‘optional
If set, indicates that this portion of work has failed; otherwise this portion of work has completed
successfully.
suspend bi t ‘Temporary suspension flag ‘optional
Indicates that the transaction branch is temporarily suspended in an incomplete state.
Rules

Rule: success

If neither fail nor suspend are specified then the portion of work has completed successfully.

Rule: session-closed

When asession is closed then the currently associated transaction branches MUST be marked rollback-only.

Rule: failure

An implementation MAY elect to roll a transaction back if this failure notification is received. Should
an implementation elect to implement this behavior, and this bit is set, then then the transaction branch
SHOULD be marked as rollback-only and the end result SHOULD have the xa-rbrollback status set.

Rule: resume

The transaction context is in a suspended state and must be resumed via the start command with resume
specified.

Exceptions

Exception: illegal-state

Error:

illegal-state

Field:

xid

200

Command Classes

If the command is invoked in an improper context (see class grammar) then the server MUST raise an
exception.

Exception: suspend-and-fail

Error: not - al | owed
Field: xi d

If suspend and fail are specified then the server MUST raise an exception.

Exception: not-associated

Error: illegal-state

The session MUST be currently associated with the given xid (through an earlier start call with the samexid).

Result

Type: Xa-result
See: Section 10.4.2, “ dtx.xa-result

This command confirms to the client that the transaction branch is ended or specify the error condition. The value
of this field may be one of the following constants: xa-ok: Normal execution. xa-rbrollback: The broker marked the
transaction branch rollback-only for an unspecified reason. If an implementation chooses to implement rollback-on-
failure behavior, then this value should be selected if the ditx.end.fail bit was set. xa-rbtimeout: The work represented
by this transaction branch took too long.

201

Command Classes

Command: dt x. comm t

Name conmi t
Code 0x4

An AMQP server MAY handle incoming dtx.commit commands (if the dtx classisimplemented).

Commit the work done on behalf a transaction branch. This command commits the work associated with xid. Any
produced messages are made available and any consumed messages are discarded.

Arguments

Name Type Description

xi d xi d Transaction xid ‘required
Specifies the xid of the transaction branch to be committed.

one- phase bi t One-phase optimization flag ‘optional
Used to indicate whether one-phase or two-phase commit is used.

Exceptions

Exception: illegal-state

Error: illegal-state
Field: xi d

If the command is invoked in an improper context (see class grammar) then the server MUST raise an
exception.

Exception: unknown-xid

Error: ‘not -found

If xid is unknown (the transaction branch has not been started or has already been ended) then the server
MUST raise an exception.

Exception: not-disassociated

Error: illegal-state

If thiscommand is called when xid is still associated with a session then the server MUST rai se an exception.

Exception: one-phase

Error: illegal-state

The one-phase bit MUST be set if acommit is sent without a preceding prepare.

202

Command Classes

Exception: two-phase

Error: illegal-state

The one-phase bit MUST NOT be set if the commit has been preceded by prepare.

Result

Type: Xarresult
See: Section 10.4.2, “ dtx.xa-result

This confirms to the client that the transaction branch is committed or specify the error condition. The value of this
field may be one of the following constants: xa-ok: Normal execution xa-heurhaz: Due to some failure, the work done
on behalf of the specified transaction branch may have been heuristically completed. xa-heurcom: Due to a heuristic
decision, the work done on behalf of the specified transaction branch was committed. xa-heurrb: Due to a heuristic
decision, the work done on behalf of the specified transaction branch was rolled back. xa-heurmix: Due to a heuristic
decision, thework done on behalf of the specified transaction branch was partially committed and partially rolled back.
xa-rbrollback: The broker marked the transaction branch rollback-only for an unspecified reason. xa-rbtimeout: The
work represented by this transaction branch took too long.

203

Command Classes

Command: dt x. f or get

Name f or get
Code 0x5

An AMQP server MAY handle incoming dtx.forget commands (if the dtx classisimplemented).

This command is called to forget about a heuristically completed transaction branch.

Arguments

Name Type Description

xi d xi d Transaction xid required
Specifies the xid of the transaction branch to be forgotten.

Exceptions

Exception: illegal-state

Error: illegal-state
Field: xid

exception.

If the command is invoked in an improper context (see class grammar) then the server MUST raise an

Exception: unknown-xid

Error: ‘not -found

MUST raise an exception.

If xid is unknown (the transaction branch has not been started or has already been ended) then the server

Exception: not-disassociated

Error: illegal-state

If thiscommand is called when xid is still associated with a session then the server MUST rai se an exception.

204

Command Classes

Command: dt x. get -t i meout

Name get - ti meout
Code 0x6

An AMQP server MAY handle incoming dtx.get-timeout commands (if the dtx classis implemented).

This command obtains the current transaction timeout value in seconds. If set-timeout was not used prior to invoking
this command, the return value is the default timeout; otherwise, the value used in the previous set-timeout call is
returned.

Arguments

Name Type Description

xi d xi d Transaction xid required
Specifies the xid of the transaction branch for getting the timeout.

Exceptions

Exception: unknown-xid

Error: not - f ound

If xid is unknown (the transaction branch has not been started or has already been ended) then the server
MUST raise an exception.

Result

Struct Type

Size Packing

4 2

Fields

Name Type Description

ti meout ui nt 32 The current transaction timeout value required
The current transaction timeout value in seconds.

205

Command Classes

Command: dt x. pr epar e

Name prepare
Code 0x7

An AMQP server MAY handle incoming dtx.prepare commands (if the dtx class isimplemented).

This command prepares for commitment any message produced or consumed on behalf of xid.

Arguments

Name Type Description

xi d xi d Transaction xid required
Specifies the xid of the transaction branch that can be prepared.

Rules

Rule: obligation-1

or rolled back regardless of failures.

Once this command successfully returnsit is guaranteed that the transaction branch may be either committed

Rule: obligation-2

The knowledge of xid cannot be erased before commit or rollback complete the branch.

Exceptions

Exception: illegal-state

Error: illegal-state
Field: xid

exception.

If the command is invoked in an improper context (see class grammar) then the server MUST raise an

Exception: unknown-xid

Error: ‘not -found

MUST raise an exception.

If xid is unknown (the transaction branch has not been started or has already been ended) then the server

Exception: not-disassociated

Error: illegal-state

If thiscommand is called when xid is still associated with a session then the server MUST rai se an exception.

206

Command Classes

Result

Type: xarresult
See: Section 10.4.2, “ dtx.xa-result

This command confirms to the client that the transaction branch is prepared or specify the error condition. The value
of this field may be one of the following constants: xa-ok: Normal execution. xa-rdonly: The transaction branch was
read-only and has been committed. xa-rbrollback: The broker marked the transaction branch rollback-only for an
unspecified reason. xa-rbtimeout: The work represented by this transaction branch took too long.

207

Command Classes

Command: dt x. r ecover

Name recover
Code 0x8

An AMQP server MAY handle incoming dtx.recover commands (if the dtx class isimplemented).

Thiscommand is called to obtain alist of transaction branches that are in a prepared or heuristically completed state.

Result

Struct Type

Size Packing

4 2

Fields

Name Type Description

i n-doubt array array of xidsto be recovered required

Array containing the xids to be recovered (xids that are in a prepared or heuristically completed
state).

208

Command Classes

Command: dt x. rol | back

Name rol | back
Code 0x9

An AMQP server MAY handle incoming dtx.rollback commands (if the dtx class isimplemented).

This command rolls back the work associated with xid. Any produced messages are discarded and any consumed
messages are re-enqueued.

Arguments

Name Type Description

xi d xi d Transaction xid required
Specifies the xid of the transaction branch that can be rolled back.

Exceptions

Exception: illegal-state

Error: illegal-state
Field: xi d

If the command is invoked in an improper context (see class grammar) then the server MUST raise an
exception.

Exception: unknown-xid

Error: ‘not -found

If xid is unknown (the transaction branch has not been started or has already been ended) then the server
MUST raise an exception.

Exception: not-disassociated

Error: illegal-state

If thiscommand is called when xid is still associated with a session then the server MUST raise an exception.

Result

Type: xXa-result
See: Section 10.4.2, “ dtx.xa-result

This command confirmsto the client that the transaction branch isrolled back or specify the error condition. The value
of this field may be one of the following constants: xa-ok: Normal execution xa-heurhaz: Due to some failure, the
work done on behalf of the specified transaction branch may have been heuristically completed. xa-heurcom: Due to
a heuristic decision, the work done on behalf of the specified transaction branch was committed. xa-heurrb: Due to a

209

Command Classes

heuristic decision, the work done on behalf of the specified transaction branch was rolled back. xa-heurmix: Dueto a
heuristic decision, the work done on behalf of the specified transaction branch was partially committed and partially
rolled back. xa-rbrollback: The broker marked the transaction branch rollback-only for an unspecified reason. xa-
rbtimeout: The work represented by this transaction branch took too long.

210

Command Classes

Command: dt x. set -ti neout

Name

set-ti meout

Code

Oxa

An AMQP server MAY handle incoming dtx.set-timeout commands (if the dtx class isimplemented).

Sets the specified transaction branch timeout value in seconds.

Arguments

Name Type Description

xi d xi d Transaction xid ‘required
Specifies the xid of the transaction branch for setting the timeout.

ti meout ui nt 32 Dtx timeout in seconds ‘required
The transaction timeout value in seconds.

Rules

Rule: effective

Once set, this timeout value is effective until this command is reinvoked with a different value.

Rule: reset

A value of zero resets the timeout value to the default value.

Exceptions

Exception: unknown-xid

Error:

‘not -found

If xid is unknown (the transaction branch has not been started or has already been ended) then the server
MUST raise an exception.

211

Command Classes

Class: exchange

CodeName Description

Ox7|exchange work with exchanges

An AMQP server MUST implement the exchange class.

An AMQP client MUST implement the exchange class.

Methods

Code |Name

Ox1 declare(exchange: name, type: str8, aternate-exchange: name, passive: hit, durable: bit, auto-delete: bit,
arguments: map)

verify exchange exists, create if needed
0x2 delete(exchange: name, if-unused: bit)

delete an exchange

0x3 query(name: str8)

reguest information about an exchange

0x4 bind(queue: queue.name, exchange: name, binding-key: str8, arguments: map)

bind queue to an exchange

0x5 unbind(queue: queue.name, exchange: name, binding-key: str8)

unbind a queue from an exchange

0x6 bound(exchange: str8, queue: str8, binding-key: str8, arguments. map)

reguest information about bindings to an exchange

Exchanges match and distribute messages across queues. Exchanges can be configured in the server or created at
runtime.

Grammar:
exchange = C: DECLARE
| C:. DELETE
/ C: QUERY
Rules

Rule: required-types

The server MUST implement these standard exchange types: fanout, direct.

Scenario: Client attemptsto declare an exchange with each of these standard types.

212

Command Classes

Rule: recommended-types

The server SHOUL D implement these standard exchange types: topic, headers.

Scenario: Client attempts to declare an exchange with each of these standard types.

Rule: required-instances

The server MUST, in each virtual host, pre-declare an exchange instance for each standard exchange type
that it implements, where the name of the exchange instance, if defined, is"amq." followed by the exchange
type name. The server MUST, in each virtual host, pre-declare at least two direct exchange instances. one
named "amg.direct”, the other with no public name that serves as a default exchange for publish commands
(such as message.transfer).

Scenario: Client creates a temporary queue and attempts to bind to each required exchange instance

("amg.fanout", "ama.direct", "amg.topic", and "amq.headers’ if those types are defined).

Rule: default-exchange

The server MUST pre-declare a direct exchange with no public name to act as the default exchange for
content publish commands (such as message.transfer) and for default queue bindings.

Scenario: Client checksthat the default exchangeisactive by publishing amessagewith asuitablerouting
key but without specifying the exchange name, then ensuring that the message arrivesin the queue correctly.

Rule: default-access

The default exchange MUST NOT be accessible to the client except by specifying an empty exchange name
in a content publish command (such as message.transfer). That is, the server must not let clients explicitly
bind, unbind, delete, or make any other reference to this exchange.

Rule: extensions

The server MAY implement other exchange types as wanted.

213

Command Classes

Domain: exchange. name

Name Type Description

name str8 exchange name

The exchange name is a client-selected string that identifies the exchange for publish commands. Exchange names
may consist of any mixture of digits, letters, and underscores. Exchange names are scoped by the virtual host.

214

Command Classes

Command: exchange. decl are

Name decl are
Code Ox1

An AMQP server MUST handle incoming exchange.declare commands.

This command creates an exchange if it does not aready exist, and if the exchange exists, verifies that it is of the
correct and expected class.

Arguments
Name Type Description
exchange nane required
type str8 exchange type required
Each exchange belongs to one of a set of exchange typesimplemented by the server. The exchange
types define the functionality of the exchange - i.e. how messages are routed through it. It is not
valid or meaningful to attempt to change the type of an existing exchange.
al ternate- |nane exchange name for unroutable messages optional
exchange In the event that amessage cannot be routed, this is the name of the exchange to which the message
will be sent. Messages transferred using message.transfer will be routed to the alternate-exchange
only if they are sent with the "none" accept-mode, and the discard-unroutable delivery property
is set to false, and there is no queue to route to for the given message according to the bindings
on this exchange.
passi ve bi t ‘do not create exchange ‘optional
If set, the server will not create the exchange. The client can use thisto check whether an exchange
exists without modifying the server state.
dur abl e bi t ‘requ%t adurable exchange ‘optional
If set when creating a new exchange, the exchange will be marked as durable. Durable exchanges
remain active when a server restarts. Non-durable exchanges (transient exchanges) are purged if/
when a server restarts.
aut o-del ete |bit ‘auto—deletewhen unused ‘optional
If set, the exchange is del eted automatically when there remain no bindings between the exchange
and any queue. Such an exchange will not be automatically deleted until at least one binding has
been made to prevent the immediate deletion of the exchange upon creation.
argunent s map ‘ arguments for declaration ‘ optional
A set of arguments for the declaration. The syntax and semantics of these arguments depends on
the server implementation. Thisfield isignored if passiveis 1.
Rules

Rule: minimum

The server SHOUL D support aminimum of 16 exchanges per virtual host and ideally, impose no limit except
as defined by available resources.

215

Command Classes

Scenario: The client creates as many exchanges asit can until the server reports an error; the number of
exchanges successfully created must be at least sixteen.

Rule: empty-name

If alternate-exchangeis not set (its name is an empty string), unroutable messages that would be sent to the
aternate-exchange MUST be dropped silently.

Rule: double-failure

A message which is being routed to a alternate exchange, MUST NOT be re-routed to a secondary alternate
exchange if it fails to route in the primary alternate exchange. After such a failure, the message MUST be
dropped. This prevents looping.

Rule: support

The server MUST support both durable and transient exchanges.

Rule: sticky

The server MUST ignore the durable field if the exchange already exists.

Rule: sticky

The server MUST ignore the auto-delete field if the exchange already exists.

Exceptions

Exception: reserved-names

Error: not - al | owed

Exchange names starting with "amq." are reserved for pre-declared and standardized exchanges. The client
MUST NOT attempt to create an exchange starting with "amq.".

Exception: exchange-name-required

Error: i nval i d- ar gurrent

The name of the exchange MUST NOT be ablank or empty string.

Exception: typed

Error: not - al | owed

Exchanges cannot be redeclared with different types. The client MUST NOT attempt to redeclare an existing
exchange with a different type than used in the original exchange.declare command.

216

Command Classes

Exception: exchange-type-not-found

Error: not - f ound

If the client attemptsto create an exchange which the server does not recognize, an exception MUST be sent.

Exception: pre-existing-exchange

Error: not - al | owed ‘

If the alternate-exchange is not empty and if the exchange already exists with a different alternate-exchange,
then the declaration MUST result in an exception.

Exception: not-found

Error: not - f ound

If set, and the exchange does not already exist, the server MUST raise an exception.

Exception: unknown-argument

Error: not - i npl erent ed

If the argumentsfield contains argumentswhich are not understood by the server, it MUST raisean exception.

217

Command Classes

Command: exchange. del et e

Name del et e
Code 0x2

An AMQP server MUST handle incoming exchange.del ete commands.

This command deletes an exchange. When an exchange is deleted all queue bindings on the exchange are cancelled.

Arguments

Name Type Description

exchange nane required

i f-unused bi t delete only if unused optional
If set, the server will only delete the exchange if it has no queue bindings. If the exchange has queue
bindings the server does not delete it but raises an exception instead.

Exceptions

Exception: exists

Error: not - f ound

The client MUST NOT attempt to delete an exchange that does not exist.

Exception: exchange-name-required

Error: i nval i d- ar gurrent

The name of the exchange MUST NOT be amissing or empty string.

Exception: used-as-alternate

Error: not - al | owed

An exchange MUST NOT be deleted if it is in use as an aternate-exchange by a queue or by another
exchange.

Exception: exchange-in-use

Error: precondition-failed

If the exchange has queue bindings, and the if-unused flag is set, the server MUST NOT del ete the exchange,
but MUST raise and exception.

218

Command Classes

Command: exchange. query

Name

query

Code

0x3

An AMQP server MUST handle incoming exchange.query commands.

This command is used to request information on a particular exchange.

Arguments

Name Type Description

nane str8 the exchange name optional
The name of the exchange for which information is requested. If not specified explicitly the default
exchange isimplied.

Result

Struct Type

Size Packing

4 2

Fields

Name Type Description

type str8 indicate the exchange type ‘ optional
The type of the exchange. Will be empty if the exchange is not found.

dur abl e bi t ‘indicatethedurability ‘optional
The durability of the exchange, i.e. if set the exchange is durable. Will not be set if the exchange
is not found.

not - f ound bi t ‘indicatean unknown exchange ‘optional
If set, the exchange for which information was requested is not known.

argunent s map ‘ other unspecified exchange properties ‘ optional

A set of properties of the exchange whose syntax and semantics depends on the server
implementation. Will be empty if the exchange is not found.

219

Command Classes

Command: exchange. bi nd

Name bi nd
Code 0x4

An AMQP server MUST handle incoming exchange.bind commands.

This command binds a queue to an exchange. Until a queue is bound it will not receive any messages. In a classic
messaging model, store-and-forward queues are bound to a direct exchange and subscription queues are bound to a
topic exchange.

Arguments

Name Type Description

queue gueue. nane required
Specifies the name of the queue to bind.

exchange nane name of the exchange to bind to required

bi ndi ng- key |str8 identifies a binding between a given exchange and queue |required
The binding-key uniquely identifies a binding between a given (exchange, queue) pair. Depending
on the exchange configuration, the binding key may be matched against the message routing key
in order to make routing decisions. The match algorithm depends on the exchange type. Some
exchange types may ignore the binding key when making routing decisions. Refer to the specific
exchange type documentation. The meaning of an empty binding key depends on the exchange
implementation.

argunent s map arguments for binding optional
A set of arguments for the binding. The syntax and semantics of these arguments depends on the
exchange class.

Rules

Rule: duplicates

A server MUST ignore duplicate bindings - that is, two or more bind commands with the same exchange,
queue, and binding-key - without treating these as an error. The value of the arguments used for the binding
MUST NOT be altered by subsequent binding requests.

Scenario: A client binds a named queue to an exchange. The client then repeats the bind (with identical
exchange, queue, and binding-key). The second binding should use adifferent value for the argumentsfield.

Rule: durable-exchange

Bindings between durable queues and durable exchanges are automatically durable and the server MUST
restore such bindings after a server restart.

Scenario: A server creates a named durable queue and binds it to a durable exchange. The server is
restarted. The client then attempts to use the queue/exchange combination.

220

Command Classes

Rule: binding-count

The server SHOULD support at least 4 bindings per queue, and ideally, impose no limit except as defined
by available resources.

Scenario: A client creates a named queue and attempts to bind it to 4 different exchanges.

Rule: multiple-bindings

Where more than one binding exists between a particular exchange instance and a particular queue instance
any given message published to that exchange should be delivered to that queue at most once, regardless
of how many distinct bindings match.

Scenario: A client createsanamed queue and bindsit to the sametopic exchange at | east threetimesusing
intersecting binding-keys (for example, "animals.*", "animals.dogs.*", "animal.dogs.chihuahua'). Verify
that a message matching all the bindings (using previous example, routing key = "animal.dogs.chihuahua')
is delivered once only.

Exceptions

Exception: empty-queue

Error: i nval i d- ar gunrent ‘

A client MUST NOT be alowed to bind a non-existent and unnamed queue (i.e. empty queue name) to an
exchange.

Scenario: A client attemptsto bind with an unnamed (empty) queue name to an exchange.

Exception: queue-existence

Error: not - f ound ‘

A client MUST NOT be allowed to bind a non-existent queue (i.e. not previously declared) to an exchange.

Scenario: A client attemptsto bind an undeclared queue name to an exchange.

Exception: exchange-existence

Error: not - f ound

A client MUST NOT be allowed to bind a queue to a non-existent exchange.

Scenario: A client attemptsto bind a named queue to a undeclared exchange.

Exception: exchange-name-required

Error: i nval i d- ar gurrent

The name of the exchange MUST NOT be ablank or empty string.

221

Command Classes

Exception: unknown-argument

Error: not - i npl erent ed

If the argumentsfield contains argumentswhich are not understood by the server, it MUST raisean exception.

222

Command Classes

Command: exchange. unbi nd

Name

unbi nd

Code

0x5

An AMQP server MUST handle incoming exchange.unbind commands.

This command unbinds a queue from an exchange.

Arguments

Name Type Description

queue gueue. namne ‘required
Specifies the name of the queue to unbind.

exchange nane ‘ ‘required
The name of the exchange to unbind from.

bi ndi ng- key |str8 ‘the key of the hinding ‘required
Specifies the binding-key of the binding to unbind.

Exceptions

Exception: non-existent-queue

Error:

not - f ound

If the queue does not exist the server MUST raise an exception.

Exception: non-existent-exchange

Error:

not - f ound

If the exchange does not exist the server MUST raise an exception.

Exception: exchange-name-required

Error:

i nval i d- ar gurrent

The name of the exchange MUST NOT be a blank or empty string.

Exception: non-existent-binding-key

Error:

not - f ound

If there is no matching binding-key the server MUST raise an exception.

223

Command Classes

Command: exchange. bound

Name

bound

Code

0x6

An AMQP server MUST handle incoming exchange.bound commands.

This command is used to request information on the bindings to a particular exchange.

Arguments

Name Type Description

exchange str8 the exchange name ‘optional
The name of the exchange for which binding information is being requested. If not specified
explicitly the default exchange isimplied.

queue str8 ‘aqueuename ‘required
If populated then determine whether the given queue is bound to the exchange.

bi ndi ng- key |str8 ‘abinding—key ‘optional
If populated defines the binding-key of the binding of interest, if not populated the request will
ignore the binding-key on bindings when searching for a match.

ar gunent s map ‘aset of binding arguments ‘optional
If populated defines the arguments of the binding of interest if not populated the request will ignore
the arguments on bindings when searching for a match

Result

Struct Type

Size Packing

4 2

Fields

Name Type Description

exchange- bi t indicate an unknown exchange ‘optional

not - f ound If set, the exchange for which information was requested is not known.

queue-not- |bit ‘indicatean unknown queue ‘optional

found If set, the queue specified is not known.

queue-not- |bit ‘indicate no matching queue ‘optional

mat ched A bit which if set indicates that no binding was found from the specified exchange to the specified
queue.

key- not - bi t ‘indicate no matching binding-key ‘optional

mat ched A bitwhichif set indicates that no binding wasfound from the specified exchange with the specified
binding-key.

ar gs- not - bi t ‘indicate no matching arguments ‘optional

mat ched

A bit whichif set indicatesthat no binding was found from the specified exchange with the specified
arguments.

224

Command Classes

225

Command Classes

Class: queue

CodeName Description
0x8|gqueue work with queues

An AMQP server MUST implement the queue class.

An AMQP client MUST implement the queue class.

Methods

Code |Name

0x1 declare(queue: name, alternate-exchange: exchange.name, passive: bit, durable: bit, exclusive: bit, auto-
delete: bit, arguments: map)

declare queue
0x2 delete(queue: name, if-unused: bit, if-empty: bit)
delete a queue

0x3 purge(queue: name)

purge a queue

0x4 guery(queue: name)
request information about a queue

Queues store and forward messages. Queues can be configured in the server or created at runtime. Queues must be
attached to at least one exchange in order to receive messages from publishers.

Grammar:

queue = C: DECLARE
/ C:.BIND

/ C: PURCGE
| C. DELETE
|/ C. QUERY
/ C: UNBI ND

Rules

Rule: any-content

A server MUST allow any content class to be sent to any queue, in any mix, and queue and deliver these
content classes independently. Note that all commands that fetch content off queues are specific to agiven
content class.

Scenario: Client creates an exchange of each standard type and several queues that it binds to each
exchange. It must then successfully send each of the standard content types to each of the available queues.

226

Command Classes

Domain: queue. nane

Name Type Description

nane str8 queue name

The queue name identifies the queue within the virtual host. Queue names must have a length of between 1 and 255
characters inclusive, must start with a digit, letter or underscores (' ") character, and must be otherwise encoded in
UTF-8.

227

Command Classes

Command: queue. decl are

Name decl are
Code 0Ox1

An AMQP server MUST handle incoming queue.declare commands.

This command creates or checks a queue. When creating a new queue the client can specify various properties that
control the durability of the queue and its contents, and the level of sharing for the queue.

Arguments

Name Type Description

queue name required

al ternat e- |exchange. namexchange name for messages with exceptions optional

exchange The alternate-exchange field specifies how messages on this queue should be treated when they are
rejected by a subscriber, or when they are orphaned by queue deletion. When present, rejected or
orphaned messages MUST be routed to the alternate-exchange. In all cases the messages MUST
be removed from the queue.

passi ve bi t ‘do not create queue ‘optional
If set, the server will not create the queue. This field allows the client to assert the presence of a
gueue without modifying the server state.

dur abl e bi t ‘request adurable queue ‘optional
If set when creating a new queue, the queue will be marked as durable. Durable queues remain
active when a server restarts. Non-durable queues (transient queues) are purged if/when a server
restarts. Note that durable queues do not necessarily hold persistent messages, although it does not
make sense to send persistent messages to a transient queue.

excl usi ve bi t ‘requeﬁt an exclusive queue ‘optional
Exclusive queues can only be used from one session at atime. Once a session declares an exclusive
gueue, that queue cannot be used by any other session until the declaring session closes.

aut o-del ete |bit ‘auto—delete gueue when unused ‘optional
If this field is set and the exclusive field is also set, then the queue MUST be deleted when the
session closes. If thisfield is set and the exclusive field is not set the queue is deleted when all the
consumers have finished using it. Last consumer can be cancelled either explicitly or because its
session is closed. If there was no consumer ever on the queue, it won't be deleted.

argunent s map arguments for declaration optional
A set of arguments for the declaration. The syntax and semantics of these arguments depends on
the server implementation. Thisfield isignored if passiveis 1.

Rules

Rule: default-binding

The server MUST create a default binding for a newly-created queue to the default exchange, which is an
exchange of type 'direct' and use the queue name as the binding-key.

228

Command Classes

Scenario: Client creates a new gqueue, and then without explicitly binding it to an exchange, attemptsto
send a message through the default exchange binding, i.e. publish a message to the empty exchange, with
the queue name as binding-key.

Rule: minimum-queues

The server SHOULD support aminimum of 256 queues per virtual host and ideally, impose no limit except
as defined by available resources.

Scenario: Client attemptsto create as many queuesasit can until the server reportsan error. Theresulting
count must at least be 256.

Rule: persistence

The queue definition MUST survive the server losing all transient memory, e.g. a machine restart.

Scenario: Client creates a durable queue; server is then restarted. Client then attempts to send message
to the queue. The message should be successfully delivered.

Rule: types

The server MUST support both durable and transient queues.

Scenario: A client creates two named queues, one durable and one transient.

Rule: pre-existence

The server MUST ignore the durable field if the queue already exists.

Scenario: A client creates two named queues, one durable and one transient. The client then attemptsto
declare the two queues using the same names again, but reversing the value of the durable flag in each case.
Verify that the queues still exist with the original durable flag values.

Rule: types

The server MUST support both exclusive (private) and non-exclusive (shared) queues.

Scenario: A client creates two named queues, one exclusive and one non-exclusive.

Rule: pre-existence

The server MUST ignore the auto-delete field if the queue already exists.

Scenario: A client creates two named queues, one as auto-delete and one explicit-delete. The client then
attempts to declare the two queues using the same names again, but reversing the value of the auto-delete
field in each case. Verify that the queues till exist with the original auto-delete flag values.

Exceptions

Exception: reserved-prefix

Error: not - al | owed

229

Command Classes

Queue names starting with "amq." are reserved for pre-declared and standardized server queues. A client
MUST NOT attempt to declare aqueue with anamethat startswith "amq." and the passive option set to zero.

Scenario: A client attempts to create a queue with a name starting with "amq." and with the passive
option set to zero.

Exception: pre-existing-exchange

Error: not - al | owed

If the alternate-exchange is not empty and if the queue already exists with a different alternate-exchange,
then the declaration MUST result in an exception.

Exception: unknown-exchange

Error: not - f ound

if the alternate-exchange does not match the name of any existing exchange on the server, then an exception
must be raised.

Exception: passive

Error: not - f ound

The client MAY ask the server to assert that a queue exists without creating the queue if not. If the queue
does not exist, the server treats thisas afailure.

Scenario: Client declares an existing queue with the passive option and expects the command to succeed.
Client then attempts to declare a non-existent queue with the passive option, and the server must close the
session with the correct exception.

Exception: in-use

Error: resour ce-1| ocked

If the server receives adeclare, bind, consume or get request for a queue that has been declared as exclusive
by an existing client session, it MUST raise an exception.

Scenario: A client declares an exclusive named queue. A second client on a different session attempts
to declare a queue of the same name.

Exception: unknown-argument

Error: not - i npl erent ed

If the argumentsfield contains argumentswhich are not understood by the server, it MUST raisean exception.

230

Command Classes

Command: queue. del et e

Name del et e
Code 0x2

An AMQP server MUST handle incoming queue.del ete commands.

This command deletes a queue. When a queue is deleted any pending messages are sent to the alternate-exchange if

defined, or discarded if it is not.

Arguments

Name Type Description

queue nane ‘required
Specifies the name of the queue to delete.

i f-unused bi t ‘deleteonly if unused ‘optional

server does does not delete it but raises an exception instead.

If set, the server will only delete the queue if it has no consumers. If the queue has consumers the

i f-enpty bi t ‘deleteonly if empty ‘optional

If set, the server will only delete the queueiif it has no messages.

Exceptions

Exception: empty-name

Error: i nval i d- ar gunent

If the queue name in this command is empty, the server MUST raise an exception.

Exception: queue-exists

Error: not - f ound

The queue must exist. If the client attempts to delete a non-existing queue the server MUST raise an
exception.

Exception: if-unused-flag

Error: precondition-failed

The server MUST respect the if-unused flag when deleting a queue.

Exception: not-empty

Error: precondition-failed

If the queue is not empty the server MUST raise an exception.

231

Command Classes

Command: queue. pur ge

Name pur ge
Code 0x3

An AMQP server MUST handle incoming queue.purge commands.

Thiscommand removes all messagesfrom aqueue. It doesnot cancel subscribers. Purged messages are del eted without
any formal "undo" mechanism.

Arguments
Name Type Description
queue nane required
Specifies the name of the queue to purge.
Rules
Rule: empty

A call to purge MUST result in an empty queue.

Rule: pending-messages

The server MUST NOT purge messages that have already been sent to a client but not yet accepted.

Rule: purge-recovery

The server MAY implement a purge queue or log that allows system administrators to recover accidentally-
purged messages. The server SHOULD NOT keep purged messages in the same storage spaces as the live
messages since the volumes of purged messages may get very large.

Exceptions

Exception: empty-name

Error: i nval i d- ar gurrent

If the the queue name in this command is empty, the server MUST raise an exception.

Exception: queue-exists

Error: not - f ound

The queue MUST exist. Attempting to purge a non-existing queue MUST cause an exception.

232

Command Classes

Command: queue. query

Name

query

Code

0x4

An AMQP server MUST handle incoming queue.query commands.

This command reguests information about a queue.

Arguments

Name Type Description

queue nane the queried queue required

Result

Struct Type

Size Packing

4 2

Fields

Name Type Description

queue nane required
Reports the name of the queue.

al ternate- |exchange. nane optional

exchange

dur abl e bi t optional

excl usi ve bi t optional

aut o-del ete |bit optional

argunent s map optional

nmessage- ui nt 32 number of messagesin queue required

count Reports the number of messagesin the queue.

subscri ber- |ui nt 32 number of subscribers required

count

Reports the number of subscribers for the queue.

233

Command Classes

Class: file
CodeName Description
0x9(fil e work with file content

An AMQP server MAY implement the file class.

An AMQP client MAY implement the file class.

Methods

Code |Name

Ox1 gos(prefetch-size: uint32, prefetch-count: uint16, global: bit)
specify quality of service

0x2 gos-ok()

confirm the requested qos

0x3 consume(queue: queue.name, consumer-tag: str8, no-local: bit, no-ack: bit, exclusive: bit, nowait: bit,
arguments: map)

start a queue consumer

0x4 |consume-ok(consumer-tag: str8)

confirm anew consumer

0x5 cancel (consumer-tag: str8)

end a queue consumer

Ox6 |open(identifier: str8, content-size: uint64)

reguest to start staging

ox7 open-ok(staged-size: uint64)

confirm staging ready

0x8 stage()
stage message content

0x9 publish(exchange: exchange.name, routing-key: str8, mandatory: bit, immediate: bit, identifier: str8)

publish a message

Oxa return(reply-code: return-code, reply-text: str8, exchange: exchange.name, routing-key: str8)

return afailed message

Oxb deliver(consumer-tag: str8, delivery-tag: uint64, redelivered: bit, exchange: exchange.name, routing-key:
str8, identifier: str8)

notify the client of a consumer message

Oxc ack(delivery-tag: uint64, multiple: bit)

acknowledge one or more messages

Oxd reject(delivery-tag: uint64, requeue: bit)

reject an incoming message

Thefile class provides commands that support reliablefile transfer. File messages have a specific set of propertiesthat
are required for interoperability with file transfer applications. File messages and acknowledgements are subject to

234

Command Classes

session transactions. Note that the file class does not provide message browsing commands; these are not compatible
with the staging model. Applications that need browsable file transfer should use Message content and the Message

class.

Grammar:

file : Q0S S: QOS- K

: CONSUME S: CONSUME- OK

. CANCEL

. OPEN S: OPEN- OK C:. STAGE cont ent
: OPEN C. OPEN- OK S: STAGE cont ent
: PUBLI SH

. DELI VER

. RETURN

C. ACK

C. REJECT

[2NeNoNeNe]

—_——_———————
0nwwuwo

Rules

Rule: reliable-storage

The server MUST make a best-effort to hold file messages on areliable storage mechanism.

Rule: no-discard

The server MUST NOT discard a file message in case of a queue overflow. The server MUST use the
Session.Flow command to slow or stop afile message publisher when necessary.

Rule: priority-levels

The server MUST implement at least 2 priority levels for file messages, where priorities 0-4 and 5-9 are
treated as two distinct levels. The server MAY implement up to 10 priority levels.

Rule: acknowledgement-support

The server MUST support both automatic and explicit acknowledgements on file content.

235

Command Classes

Domain: file.fil e-properties

Struct Type

Size Packing

4 2

Fields

Name Type Description

cont ent - str8 MIME content type optional
type

content - str8 MIME content encoding optional
encodi ng

header s map message header field table optional
priority uint8 message priority, 0t0 9 optional
reply-to str8 destination to reply to optional
nmessage-id |str8 application message identifier optional
fil enane str8 message filename optional
ti mestanp datetime message timestamp optional
cluster-id |str8 intra-cluster routing identifier optional

236

Command Classes

Domain: fil e. return-code

Name Type Description
return-code |ui nt 16 return code from server

The return code. The AMQP return codes are defined by this enum.

Valid Values
Value|Name Description

311 |content - The client attempted to transfer content larger than the server could accept.
too-I arge

312|no-route The exchange cannot route a message, most likely dueto an invalid routing key.

Only when the mandatory flag is set.

313|no- The exchange cannot deliver to a consumer when the immediate flag is set. Asa

consuners result of pending data on the queue or the absence of any consumers of the queue.

237

Command Classes

Command: fil e. qos

Name qos
Code 0x1
Response gos-ok

An AMQP server MUST handle incoming file.qos commands (if the file class isimplemented).

This command requests a specific quality of service. The QoS can be specified for the current session or for all sessions
on the connection. The particular properties and semantics of a gos command always depend on the content class
semantics. Though the gos command could in principle apply to both peers, it is currently meaningful only for the
server.

Arguments

Name Type Description

pref et ch- ui nt 32 pre-fetch window in octets optional

st ze The client can request that messages be sent in advance so that when the client finishes processing
amessage, the following message is already held locally, rather than needing to be sent within the
session. Pre-fetching gives a performance improvement. This field specifies the pre-fetch window
sizein octets. May be set to zero, meaning "no specific limit". Note that other pre-fetch limits may
still apply. The prefetch-size isignored if the no-ack option is set.

pr ef et ch- ui nt 16 ‘pre—fetch window in messages optional

count Specifies a pre-fetch window in terms of whole messages. This is compatible with some file API
implementations. This field may be used in combination with the prefetch-size field; a message
will only be sent in advance if both pre-fetch windows (and those at the session and connection
level) alow it. The prefetch-count isignored if the no-ack option is set.

gl obal bi t ‘aoply to entire connection optional
By default the QoS settings apply to the current session only. If this field is set, they are applied
to the entire connection.

Rules

Rule: prefetch-discretion

The server MAY send less data in advance than allowed by the client's specified pre-fetch windows but it
MUST NOT send more.

238

Command Classes

Command: fil e. qos- ok

Name gos- ok
Code 0x2

An AMQP client MUST handle incoming file.qos-ok commands (if the file class isimplemented).

This command tellsthe client that the requested QoS level s could be handled by the server. The requested QoS applies
to al active consumers until a new QoS is defined.

239

Command Classes

Command: fil e. consune

Name consune
Code 0x3
Response consume-ok

An AMQP server MUST handle incoming file.consume commands (if the file class isimplemented).

This command asks the server to start a"consumer"”, which is atransient request for messages from a specific queue.
Consumers last as long as the session they were created on, or until the client cancels them.

Arguments

Name Type Description

queue gueue. nane ‘optional
Specifies the name of the queue to consume from.

consuner - str8 ‘ ‘optiona]

tag Specifiesthe identifier for the consumer. The consumer tag islocal to a connection, so two clients
can use the same consumer tags.

no- | ocal bi t ‘ ‘optional
If the no-local field is set the server will not send messages to the connection that published them.

no- ack bi t ‘ no acknowledgement needed ‘optiona]
If this field is set the server does not expect acknowledgements for messages. That is, when a
message is delivered to the client the server automatically and silently acknowledges it on behalf
of the client. This functionality increases performance but at the cost of reliability. Messages can
get lost if aclient dies beforeit can deliver them to the application.

excl usi ve bi t ‘requeﬂ exclusive access ‘optional
Request exclusive consumer access, meaning only this consumer can access the queue.

nowai t bi t ‘do not send areply command ‘optiona]
If set, the server will not respond to the command. The client should not wait for areply command.
If the server could not complete the command it will raise an exception.

argunent s map ‘ arguments for consuming ‘ optional
A set of arguments for the consume. The syntax and semantics of these arguments depends on the
providers implementation.

Rules

Rule: min-consumers

The server SHOULD support at least 16 consumers per queue, unless the queue was declared as private, and
ideally, impose no limit except as defined by available resources.

Exceptions

Exception: queue-exists-if-empty

Error: not - al | owed

240

Command Classes

If the queue name in this command is empty, the server MUST raise an exception.

Exception: not-existing-consumer

Error: not - al | owed

The tag MUST NOT refer to an existing consumer. If the client attempts to create two consumers with the
same non-empty tag the server MUST raise an exception.

Exception: not-empty-consumer-tag

Error: not - al | owed

The client MUST NOT specify atag that is empty or blank.

Scenario: Attempt to create a consumers with an empty tag.

Exception: in-use

Error: resour ce-| ocked

If the server cannot grant exclusive access to the queue when asked, - because there are other consumers
active - it MUST raise an exception.

241

Command Classes

Command: fil e. consune- ok

Name consune- ok
Code 0x4

An AMQP client MUST handle incoming file.consume-ok commands (if the file class is implemented).

This command providesthe client with aconsumer tag which it MUST usein commands that work with the consumer.

Arguments

Name Type Description

consuner - str8 optional
tag Holds the consumer tag specified by the client or provided by the server.

242

Command Classes

Command: fil e. cancel

Name cancel
Code 0x5

An AMQP server MUST handle incoming file.cancel commands (if the file class is implemented).

This command cancels a consumer. This does not affect already delivered messages, but it does mean the server will
not send any more messages for that consumer.

Arguments

Name Type Description

consuner - str8 optional
tag the identifier of the consumer to be cancelled.

243

Command Classes

Command: fil e. open

Name open
Code 0x6
Response open-ok

An AMQP server MUST handle incoming file.open commands (if the file class isimplemented).
An AMQP client MUST handle incoming file.open commands (if the file class is implemented).

This command requests permission to start staging a message. Staging means sending the message into a temporary
areaat the recipient end and then delivering the message by referring to thistemporary area. Staging ishow the protocol
handles partia filetransfers - if amessageis partially staged and the connection breaks, the next time the sender starts
to stageit, it can restart from where it | eft off.

Arguments

Name Type Description

identifier |str8 staging identifier ‘optional
Thisisthe staging identifier. Thisis an arbitrary string chosen by the sender. For staging to work
correctly the sender must use the same staging identifier when staging the same message a second
time after recovery from afailure. A good choice for the staging identifier would be the SHA 1 hash
of the message properties data (including the original filename, revised time, etc.).

content - ui nt 64 message content size ‘optional

Sl ze The size of the content in octets. The recipient may use this information to allocate or check
available space in advance, to avoid "disk full" errors during staging of very large messages.

Rules

Rule: content-size

The sender MUST accurately fill the content-size field. Zero-length content is permitted.

244

Command Classes

Command: fil e. open- ok

Name open- ok
Code 0ox7
Response stage

An AMQP server MUST handle incoming file.open-ok commands (if the file class isimplemented).

An AMQP client MUST handle incoming file.open-ok commands (if the file class isimplemented).

This command confirms that the recipient is ready to accept staged data. If the message was already partially-staged

at a previous time the recipient will report the number of octets already staged.

Arguments
Name Type Description
st aged- si ze |ui nt 64 aready staged amount optional

The amount of previously-staged content in octets. For a new message thiswill be zero.

Rules

Rule: behavior

The sender MUST start sending data from this octet offset in the message, counting from zero.

Rule: staging

commands.

Therecipient MAY decide how long to hold partially-staged content and MAY implement staging by always
discarding partially-staged content. However if it uses the file content type it MUST support the staging

245

Command Classes

Command: fil e. stage

Name st age
Code 0x8

An AMQP server MUST handle incoming file.stage commands (if the file class is implemented).
An AMQP client MUST handle incoming file.stage commands (if the file classisimplemented).

This command stages the message, sending the message content to the recipient from the octet offset specified in the
Open-Ok command.

Segments
Following the command segment, the following segments may follow.

header

This segment MUST be present.

The header segment consists of at most one of each of the following entries:
» file-properties [optional].

body

This segment is optional.

The body segment consists of opaque binary data (i.e. the message body).

246

Command Classes

Command: fil e. publish

Name publi sh
Code 0x9

An AMQP server MUST handle incoming file.publish commands (if the file classis implemented).

This command publishes a staged file message to a specific exchange. The file message will be routed to queues
as defined by the exchange configuration and distributed to any active consumers when the transaction, if any, is
committed.

Arguments

Name Type Description

exchange exchange. nane ‘optional
Specifies the name of the exchange to publish to. The exchange name can be empty, meaning the
default exchange. If the exchange name is specified, and that exchange does not exist, the server
will raise an exception.

routing-key |str8 ‘nge routing key ‘optional
Specifiesthe routing key for the message. The routing key is used for routing messages depending
on the exchange configuration.

mandat ory bi t ‘indicate mandatory routing ‘optional
This flag tells the server how to react if the message cannot be routed to a queue. If this flag is
set, the server will return an unroutable message with a Return command. If this flag is zero, the
server silently drops the message.

i medi at e bi t ‘request immediate delivery ‘optional
This flag tells the server how to react if the message cannot be routed to a queue consumer
immediately. If this flag is set, the server will return an undeliverable message with a Return
command. If thisflag is zero, the server will queue the message, but with no guarantee that it will
ever be consumed.

identifier |str8 staging identifier optional
Thisisthe staging identifier of the message to publish. The message must have been staged. Note
that a client can send the Publish command asynchronously without waiting for staging to finish.

Rules

Rule: default

The server MUST accept a blank exchange name to mean the default exchange.

Rule: implementation

The server SHOULD implement the mandatory flag.

Rule: implementation

The server SHOUL D implement the immediate flag.

247

Command Classes

Exceptions

Exception: refusal

Error: not - i npl erent ed

The exchange MAY refuse file content in which case it MUST send an exception.

248

Command Classes

Command: file.return

Name return
Code Oxa

An AMQP client MUST handle incoming file.return commands (if the file class is implemented).

This command returns an undeliverable message that was published with the "immediate” flag set, or an unroutable
message published with the "mandatory" flag set. The reply code and text provide information about the reason that
the message was undeliverable.

Arguments

Name Type Description

repl y-code |return-code optional

reply-text |str8 The localized reply text. optional
This text can be logged as an aid to resolving issues.

exchange exchange. nade ‘optional
Specifies the name of the exchange that the message was originally published to.

routing-key |str8 ‘Mesgagerouting key ‘optiona]
Specifies the routing key name specified when the message was published.

Segments

Following the command segment, the following segments may follow.

header

This segment MUST be present.

The header segment consists of at most one of each of the following entries:
« file-properties [optional].

body

This segment is optional.

The body segment consists of opaque binary data (i.e. the message body).

249

Command Classes

Command: fil e.deliver

Name del i ver
Code Oxb

An AMQP client MUST handle incoming file.deliver commands (if the file class is implemented).

This command delivers a staged file message to the client, via a consumer. In the asynchronous message delivery
model, the client starts a consumer using the consume command, then the server responds with Deliver commands as
and when messages arrive for that consumer.

Arguments
Name Type Description
consuner - str8 optional
tag
del i very- ui nt 64 optional
tag The server-assigned and session-specific delivery tag
redelivered |bit ‘Indicate possible duplicate delivery ‘optional
This boolean flag indicates that the message may have been previously delivered to this or another
client.
exchange exchange. nade ‘optiona]
Specifies the name of the exchange that the message was originally published to.
routing-key |str8 ‘Mmge routing key ‘optional
Specifies the routing key name specified when the message was published.
identifier |str8 ‘staging identifier ‘optiona]
Thisis the staging identifier of the message to deliver. The message must have been staged. Note
that a server can send the Deliver command asynchronously without waiting for staging to finish.
Rules

Rule: redelivery-tracking

The server SHOULD track the number of times amessage has been delivered to clients and when amessage
is redelivered a certain number of times - e.g. 5 times - without being acknowledged, the server SHOULD
consider the message to be non-processable (possibly causing client applications to abort), and move the
message to a dead letter queue.

Rule: non-zero

The server MUST NOT use a zero value for delivery tags. Zero is reserved for client use, meaning "all
messages so far received”.

250

Command Classes

Command: fil e. ack

Name ack
Code Oxc

An AMQP server MUST handle incoming file.ack commands (if the file class isimplemented).

This command acknowledges one or more messages delivered viathe Deliver command. The client can ask to confirm
asingle message or a set of messages up to and including a specific message.

Arguments

Name Type Description

delivery- ui nt 64 ‘optional

tag The identifier of the message being acknowledged

mul tiple bi t acknowledge multiple messages ‘optional
If set to 1, the delivery tag is treated as "up to and including”, so that the client can acknowledge
multiple messages with asingle command. If set to zero, the delivery tag refersto a single message.
If the multiplefield is 1, and the delivery tag is zero, tellsthe server to acknowledge all outstanding
messages.

Rules

Rule: session-local

The delivery tag is valid only within the session from which the message was received. i.e. A client MUST
NOT receive amessage on one session and then acknowledge it on another.

Rule: validation

The server MUST validate that anon-zero delivery-tag refersto an delivered message, and raise an exception
if thisis not the case.

251

Command Classes

Command: fil e.reject

Name reject
Code Ooxd

An AMQP server MUST handle incoming file.rgject commands (if the file class is implemented).

Thiscommand alows aclient to reject amessage. It can be used to return untreatable messagesto their origina queue.
Note that file content is staged before delivery, so the client will not use this command to interrupt delivery of alarge

message.

Arguments

Name Type Description

delivery- ui nt 64 ‘optional

tag the identifier of the message to be rejected

requeue bi t regueue the message ‘optional
If thisfield is zero, the message will be discarded. If thisbit is 1, the server will attempt to requeue
the message.

Rules

Rule: server-interpretation

The server SHOULD interpret this command as meaning that the client is unable to process the message
at thistime.

Rule: not-selection

A client MUST NOT use this command as a means of selecting messages to process. A rejected message
MAY be discarded or dead-lettered, not necessarily passed to another client.

Rule: session-local

The delivery tag is valid only within the session from which the message was received. i.e. A client MUST
NOT receive amessage on one session and then regject it on another.

Rule: requeue-strategy

The server MUST NOT deliver the message to the same client within the context of the current session.
The recommended strategy isto attempt to deliver the message to an alternative consumer, and if that is not
possible, to move the message to a dead-letter queue. The server MAY use more sophisticated tracking to
hold the message on the queue and redeliver it to the same client at alater stage.

252

Command Classes

Class: stream

CodeName Description

Oxa|lstream work with streaming content

An AMQP server MAY implement the stream class.

An AMQP client MAY implement the stream class.

Methods
Code |Name
0x1 |qos(prefetch-size: uint32, prefetch-count: uintl6, consume-rate: uint32, global: bit)
specify quality of service
0x2 gos-ok()
confirm the requested qos
0x3 consume(queue: queue.name, consumer-tag: str8, no-local: bit, exclusive: bit, nowait: bit, arguments: map)
start a queue consumer
0x4 consume-ok(consumer-tag: str8)
confirm anew consumer
0x5 | cancel(consumer-tag: str8)
end a queue consumer
0x6 publish(exchange: exchange.name, routing-key: str8, mandatory: bit, immediate: bit)
publish a message
0x7 return(reply-code: return-code, reply-text: str8, exchange: exchange.name, routing-key: str8)
return afailed message
0x8 deliver(consumer-tag: str8, delivery-tag: uint64, exchange: exchange.name, queue: queue.name)

notify the client of a consumer message

The stream class provides commands that support multimedia streaming. The stream class uses the following
semantics: one message is one packet of data; delivery is unacknowledged and unreliable; the consumer can specify
quality of service parameters that the server can try to adhere to; lower-priority messages may be discarded in favor

of high priority messages.
Grammar:
stream = C QOS S: QOS- K

/ C: CONSUME S: CONSUME- OK
/ C: CANCEL
/ C. PUBLI SH cont ent
/ S: RETURN
/

S: DELI VER cont ent

253

Command Classes

Rules

Rule: overflow-discard

The server SHOULD discard stream messages on apriority basisif the queue size exceeds some configured
limit.

Rule: priority-levels

The server MUST implement at least 2 priority levelsfor stream messages, where priorities 0-4 and 5-9 are
treated as two distinct levels. The server MAY implement up to 10 priority levels.

Rule: acknowledgement-support

The server MUST implement automatic acknowledgements on stream content. That is, as soon as a message
isdelivered to aclient viaaDeliver command, the server must remove it from the queue.

254

Command Classes

Domain: st ream streant properties

Struct Type

Size Packing

4 2

Fields

Name Type Description

cont ent - str8 MIME content type optional
type

content - str8 MIME content encoding optional
encodi ng

header s map message header field table optional
priority uint8 message priority, 0t0 9 optional
ti mestanp dateti me message timestamp optional

255

Command Classes

Domain: st ream r et ur n- code

Name Type Description
return-code |ui nt 16 return code from server

The return code. The AMQP return codes are defined by this enum.

Valid Values
Value|Name Description

311 |content - The client attempted to transfer content larger than the server could accept.
too-I arge

312|no-route The exchange cannot route a message, most likely dueto an invalid routing key.

Only when the mandatory flag is set.

313|no- The exchange cannot deliver to a consumer when the immediate flag is set. Asa

consuners result of pending data on the queue or the absence of any consumers of the queue.

256

Command Classes

Command: st r eam qos

Name qos
Code 0x1
Response gos-ok

An AMQP server MUST handle incoming stream.qos commands (if the stream class is implemented).

This command requests a specific quality of service. The QoS can be specified for the current session or for all sessions
on the connection. The particular properties and semantics of a gos command always depend on the content class
semantics. Though the gos command could in principle apply to both peers, it is currently meaningful only for the
server.

Arguments

Name Type Description

pref et ch- ui nt 32 pre-fetch window in octets optional

sl ze The client can request that messages be sent in advance so that when the client finishes processing
amessage, the following message is already held locally, rather than needing to be sent within the
session. Pre-fetching gives a performance improvement. This field specifies the pre-fetch window
sizein octets. May be set to zero, meaning "no specific limit". Note that other pre-fetch limits may
still apply.

pr ef et ch- ui nt 16 ‘pre—fetch window in messages ‘optional

count Specifies a pre-fetch window in terms of whole messages. This field may be used in combination
with the prefetch-size field; amessage will only be sent in advance if both pre-fetch windows (and
those at the session and connection level) allow it.

consumne- ui nt 32 ‘transfer rate in octets/second ‘optiona]

rate Specifiesadesired transfer rate in octets per second. Thisis usually determined by the application
that uses the streaming data. A value of zero means "no limit", i.e. as rapidly as possible.

gl obal bi t ‘apply to entire connection ‘optional
By default the QoS settings apply to the current session only. If this field is set, they are applied
to the entire connection.

Rules

Rule: ignhore-prefetch

The server MAY ignore the pre-fetch values and consume rates, depending on the type of stream and the
ability of the server to queue and/or reply it.

Rule: drop-by-priority

The server MAY drop low-priority messagesin favor of high-priority messages.

257

Command Classes

Command: st ream qos- ok

Name gos- ok
Code 0x2

An AMQP client MUST handle incoming stream.gqos-ok commands (if the stream class isimplemented).

This command tellsthe client that the requested QoS level s could be handled by the server. The requested QoS applies
to al active consumers until a new QoS is defined.

258

Command Classes

Command: st ream consune

Name consune
Code 0x3
Response consume-ok

An AMQP server MUST handle incoming stream.consume commands (if the stream class is implemented).

This command asks the server to start a"consumer", which is atransient request for messages from a specific queue.
Consumers last aslong as the session they were created on, or until the client cancels them.

Arguments

Name Type Description

queue gueue. name ‘optional
Specifies the name of the queue to consume from.

consuner - str8 ‘ ‘optional

tag Specifiesthe identifier for the consumer. The consumer tag islocal to a connection, so two clients
can use the same consumer tags.

no- | ocal bi t ‘ ‘optional
If the no-local field is set the server will not send messages to the connection that published them.

excl usi ve bi t ‘requast exclusive access ‘optional
Request exclusive consumer access, meaning only this consumer can access the queue.

nowai t bi t ‘do not send areply command ‘optional
If set, the server will not respond to the command. The client should not wait for areply command.
If the server could not complete the command it will raise an exception.

argunent s map ‘ arguments for consuming ‘ optional
A set of arguments for the consume. The syntax and semantics of these arguments depends on the
providers implementation.

Rules

Rule: min-consumers

The server SHOULD support at least 16 consumers per queue, unless the queue was declared as private, and
ideally, impose no limit except as defined by available resources.

Rule: priority-based-delivery

Streaming applications SHOULD use different sessions to select different streaming resolutions. AMQP
makes no provision for filtering and/or transforming streams except on the basis of priority-based selective
delivery of individual messages.

Exceptions

Exception: queue-exists-if-empty

Error: not - al | owed

259

Command Classes

If the queue name in this command is empty, the server MUST raise an exception.

Exception: not-existing-consumer

Error: not - al | owed

The tag MUST NOT refer to an existing consumer. If the client attempts to create two consumers with the
same non-empty tag the server MUST raise an exception.

Exception: not-empty-consumer-tag

Error: not - al | owed

The client MUST NOT specify atag that is empty or blank.

Scenario: Attempt to create a consumers with an empty tag.

Exception: in-use

Error: resour ce-| ocked ‘

If the server cannot grant exclusive access to the queue when asked, - because there are other consumers
active - it MUST raise an exception with return code 405 (resource locked).

260

Command Classes

Command: st r eam consune- ok

Name consune- ok
Code 0x4

An AMQP client MUST handle incoming stream.consume-ok commands (if the stream class is implemented).

This command provides the client with a consumer tag which it may use in commands that work with the consumer.

Arguments

Name Type Description

consuner - str8 optional
tag Holds the consumer tag specified by the client or provided by the server.

261

Command Classes

Command: st r eam cancel

Name cancel
Code 0x5

An AMQP server MUST handle incoming stream.cancel commands (if the stream class is implemented).

This command cancels a consumer. Since message delivery is asynchronous the client may continue to receive
messages for a short while after cancelling a consumer. It may process or discard these as appropriate.

Arguments

Name Type Description

consuner - str8 optional
tag

262

Command Classes

Command: stream publ i sh

Name publ i sh
Code 0x6

An AMQP server MUST handle incoming stream.publish commands (if the stream class isimplemented).

This command publishes a message to a specific exchange. The message will be routed to queues as defined by the
exchange configuration and distributed to any active consumers as appropriate.

Arguments

Name Type Description

exchange exchange. name ‘optional
Specifies the name of the exchange to publish to. The exchange name can be empty, meaning the
default exchange. If the exchange name is specified, and that exchange does not exist, the server
will raise an exception.

routing-key |str8 ‘Mesgage routing key ‘optional
Specifiesthe routing key for the message. The routing key is used for routing messages depending
on the exchange configuration.

mandat ory bi t ‘ indicate mandatory routing ‘optional
This flag tells the server how to react if the message cannot be routed to a queue. If this flag is
set, the server will return an unroutable message with a Return command. If this flag is zero, the
server silently drops the message.

i medi at e bi t ‘request immediate delivery ‘optional
This flag tells the server how to react if the message cannot be routed to a queue consumer
immediately. If this flag is set, the server will return an undeliverable message with a Return
command. If thisflag is zero, the server will queue the message, but with no guarantee that it will
ever be consumed.

Segments

Following the command segment, the following segments may follow.
header

This segment MUST be present.

The header segment consists of at most one of each of the following entries:
e stream properti es [optional].

body

This segment is optional.

The body segment consists of opaque binary data (i.e. the message body).

263

Command Classes

Rules

Rule: default

The server MUST accept a blank exchange name to mean the default exchange.

Rule: implementation

The server SHOULD implement the mandatory flag.

Rule: implementation

The server SHOULD implement the immediate flag.

Exceptions

Exception: refusal

Error: not - i npl emrent ed

The exchange MAY refuse stream content in which case it MUST respond with an exception.

264

Command Classes

Command: stream return

Name return
Code Ox7

An AMQP client MUST handle incoming stream.return commands (if the stream classis implemented).

This command returns an undeliverable message that was published with the "immediate” flag set, or an unroutable
message published with the "mandatory" flag set. The reply code and text provide information about the reason that
the message was undeliverable.

Arguments

Name Type Description

repl y-code |return-code optional

reply-text |str8 The localized reply text. optional
Thelocalized reply text. Thistext can be logged as an aid to resolving issues.

exchange exchange. nade ‘optional
Specifies the name of the exchange that the message was originally published to.

routing-key |str8 ‘Mesgagerouting key ‘optiona]
Specifies the routing key name specified when the message was published.

Segments

Following the command segment, the following segments may follow.

header

This segment MUST be present.

The header segment consists of at most one of each of the following entries:
» stream properti es [optional].

body

This segment is optional.

The body segment consists of opaque binary data (i.e. the message body).

265

Command Classes

Command: st ream del i ver

Name del i ver
Code 0x8

An AMQP client MUST handle incoming stream.deliver commands (if the stream class is implemented).

This command delivers a message to the client, via a consumer. In the asynchronous message delivery model, the
client starts a consumer using the Consume command, then the server responds with Deliver commands as and when
messages arrive for that consumer.

Arguments

Name Type Description

consuner - str8 optional

tag

del i very- ui nt 64 optional

tag The server-assigned and session-specific delivery tag

exchange exchange. nade ‘optional
Specifies the name of the exchange that the message was originally published to.

queue queue. nane ‘ ‘required
Specifies the name of the queue that the message came from. Note that a single session can start
many consumers on different queues.

Segments

Following the command segment, the following segments may follow.

header

This segment MUST be present.

The header segment consists of at most one of each of the following entries:
» stream properti es [optional].

body

This segment is optional.

The body segment consists of opaque binary data (i.e. the message body).

Rules

Rule: session-local

The delivery tag isvalid only within the session from which the message was received. i.e. A client MUST
NOT receive amessage on one session and then acknowledge it on another.

266

11. The Model

11.1. Exchanges

11.1.1. Mandatory Exchange Types

11.1.1.1. Direct Exchanges

Rule: exchange_type_direct

An AMQP Server MUST implement the direct exchange type.

Rule: exchange_type_direct_binding

If amessage M, which has routing-key R, is sent to an exchange E of type direct; then M shall be delivered
toaqueue Qif and only if thereis abinding between E and Q with binding key K such that K = R (excepting
any rule which preventsthis delivery).

Rule: default_exchange

An AMQP Server MUST implement an exchange of type direct with name equal to the empty string (a
str8 vaue of length zero). Upon creation every queue MUST be bound automatically by the server to this
exchange with a binding-key equal to the name of the queue created.

Rule: amq_direct_exchange

An AMQP Server MUST implement an exchange of type direct with name amg.direct.

11.1.1.2. Fanout Exchanges

Rule: exchange_type fanout

An AMQP Server MUST implement the fanout exchange type.

Rule: exchange type fanout_binding

If amessage M, which hasrouting-key R, is sent to an exchange E of type fanout; then M shall be delivered to
aqueue Qif and only if thereisabinding between E and Q (the binding-key used is unimportant) (excepting
any rule which prevents this ddlivery).

Rule: amqg_fanout_exchange

An AMQP Server MUST implement an exchange of type fanout with name amg.fanout.

267

The Model

11.1.2. Optional Exchange Types

11.1.2.1. Headers Exchanges

Rule: exchange type headers

An AMQP Server SHOULD implement the headers exchange type.

Rule: headers_exchange requires_match_arg

When creating a binding between an exchange E, of type headers and any queue Q the arguments field
MUST contain akey "x-match" to avalue of type str8 which must equal either "any" or "all". If thearguments
field does not contain a key "x-match" then an exception of type invalid-argument MUST be raised.

Rule: headers_exchange requires_match_all

Consider a message M, which has an application-headers map P, which is sent to an exchange E of type
headers. If there exists a binding between E a queue Q with binding-key K and arguments map A containg
themapping{ "x-match" -> (str8,"all") }, then message M MUST route to Q because of
binding K if and only if for every mapping {key -> (type, value)} in the binding arguments map P which does
not have a key beginning with "x-"; there is a matching mapping in the application-headers. In this context
"mtaching" means that either the same triplet of key, type, value exist in the application-headers map, or
that the mapping in the binding arguments is of the form {key -> void, }, in which case any mapping with
same key will match.

Rule: headers_exchange requires_match_any

Consider a message M, which has an application-headers map P, which is sent to an exchange E of type
headers. If there exists abinding between E aqueue Q with binding-key K and arguments map A containg the
mapping{ "x-match" -> (str8,"all") },then messageM MUST routeto Q because of binding
Kif and only if there exists at least one mapping {key -> (type, value)} in the binding arguments map P which
does not have a key beginning with "x-"; for which there is a matching mapping in the application-headers.
In this context "mtaching" means that either the same triplet of key, type, value exist in the application-
headers map, or that the mapping in the binding arguments is of the form {key -> void, }, in which case
any mapping with same key will match.

Rule: amqg_match_exchange

The server SHOULD implement the headers exchange type and in that case, the server MUST pre-declare
within each virtual host at least one exchange of type headers, named amg.match.

11.1.2.2. Topic Exchanges

Rule: exchange type topic

An AMQP Server SHOULD implement the topic exchange type.

268

The Model

Rule: exchange type topic_binding

If amessage M, which has routing-key R, is sent to an exchange E of type topic; then M shall be delivered
to aqueue Q if and only if thereis a binding between E and Q with binding key K such that (excepting any
rule which prevents this delivery) K matches R where matching in this context means the following:

¢ TheRistreated as zero or more more words, delimited by the'.' character.

e The binding key MUST be specified in this form and additionally supports special wild-card characters:
"' matches a single word and '# matches zero or more words.

Thus the routing pattern * .stock.# matches the routing keys usd.stock and eur.stock.db but not stock.nasdag.

Rule: amq_topic_exchange

The server SHOULD implement the topic exchange type and in that case, the server MUST pre-declare
within each virtual host at |east one exchange of type topic, named amg.topic.

11.1.2.3. Failover Exchanges

Rule: exchange_type failover

An AMQP Server SHOULD implement the failover exchange type.

Rule: amqg_failover_exchange

If an AMQP Server implements the failover exchange, it MUST implement an exchange of type failover
with name amq.failover.

Rule: only_one_failover_exchange

An attempt to declare an exchange of type failover except in passive mode should result in an exception
of type not-allowed.

Rule: failover_exchange allow_private_queues

Any AMQP client MAY bind a private queue to this exchange.

Rule: failover_exchange disallow_shared_queues

It is an error to bind a non-private queue to this exchange. Attempting to bind a queue which is not private
to an exchange of type failover MUST result in an exception of type not-allowed.

Rule: failover_exchange_behavior

Queues bound to an exchange of type failover receive messages with updated information about the set of
available failover candidates.

The failover exchange MUST emit "failover update messages' under the following circumstances:

1. When anew queue isbound to the exchange, that queue immediately receives afailover update message.

269

The Model

2. When the set of failover candidates changes, queues bound to the failover exchange receive an update.

Rule: failover_exchange messages

A failover update message MUST have an empty body. The application-headers field of the message-
properties header MUST contain exactly one entry with name "amq.failover" and a value of type array (but
of domain amgp-url-array) containing alist of AMQP URLSs.

The URL provides a list of broker addresses that the client MAY fail over to in the event of a crash or
disconnect.

Rule: failover_exchange message_url_ordering

The broker SHOULD order the addresses in such away that resources will be efficiently allocated if clients
consistently connect to the first address on the list. Clients SHOULD try addresses in the order listed.
However a client MAY choose any address on the list. The list MAY have a single entry or be empty
depending on the configuration of the cluster. The client MAY attempt to reconnect to the original broker
aswell asthe brokerslisted in failover updates.

Rule: failover_exchange message_differences

The failover exchange MAY give different failover lists to each connected queue - different order or
entirely different addresses. For example each client might receive a different random ordering of available
candidates to balance load. Another example, the broker might give different failvover lists to provide
different quality of service guarantees to different clients, or might replicate information about each clients
to adifferent set of backup brokers.

Rule: failover_exchange spontaneous_disconnect

A healthy broker MAY abruptly disconnect clientswithout thenormal connection closure protocol in order to
force afail over for load balancing purposes. It SHOULD wait till all queues bound to the failover exchange
are empty (i.e. al clients have received the latest failover update message) but it MAY disconnect clients
that are slow to respond after a broker determined timeout.

Rule: failover_exchange usage

Brokers that do not support fail-over are not required to provide the "amq.failover" exchange. Clients that
do not support fail-over are not required to useit.

11.1.3. System Exchanges

Rule: exchange_type system

An AMQP Server MAY implement the system exchange type.

Rule: system_exchange_behavior

The system exchange type works as follows:

270

The Model

1. A publisher sends the exchange a message with the routing key S.
2. The system exchange passes thisto a system service S.

System services starting with "amg." are reserved for AMQP usage. All other names may be used freely on
by server implementations.

Rule: system_exchange_binding_forbidden

An attempt to bind any queueto an exchange of type system MUST result in an exception of type not-allowed.

11.1.4. Implementation-defined Exchange Types

Rule: exchange type naming

All non-normative exchange types MUST be named starting with "x-". Exchange typesthat do not start with
"x-" arereserved for future use in the AMQP standard.

11.1.5. Exchange Naming

Rule: exchange_naming

Exchange names beginning "amq." are reserved for AMQP standard exchanges. An attempt to declare an
exchange with name beginning "amq.” except in passive mode MUST result in an exception of type not-
allowed.

11.2. Queues

Rule: queue_naming

Queue names beginning "amq." are reserved for AM QP standard queues. An attempt to declare aqueue with
name beginning "amg." except in passive mode MUST result in an exception of type not-allowed.

271

12. Protocol Grammar
12.1. Augmented BNF Rules

We use the Augmented BNF syntax defined in IETF RFC 2234. In summary,

1
2.

8.
9.

The name of aruleis simply the name itself.

Terminalsare specified by one or more numeric characterswith the baseinterpretation of those charactersindicated
as'b, 'd or 'x'.

A rule can define asimple, ordered string of values by listing a sequence of rule names.

A range of aternative numeric values can be specified compactly, using dash ("-") to indicate the range of
alternative values.

Elements enclosed in parentheses are treated as a single element, whose contents are strictly ordered.
Elements separated by forward slash ("/") are alternatives.

The operator "*" preceding an element indicates repetition. The full formis: "<a>*element", where <a> and
 are optional decimal values, indicating at least <a> and at most occurrences of element.

A rule of the form: "<n>element" is equivalent to <n>* <n>element.

Square brackets enclose an optional €lement sequence.

12.2. Grammar

We provide a complete grammar for AMQP:

Framing

angp prot ocol - header *frame

pr ot ocol - header AM®P cl ass instance nmjor m nor

AMP = " AMQP"
protocol -cl ass = %01
protocol -i nstance = %01 ; AMQP over TCP
/| %02 ; AMQP over SCTP
maj or = OCTET ; maj or version
m nor = OCTET ; monor version

frame = frame-header frame-body

frame-header = flags type size %00 %0.0.0.0 track channel %00.00.00.00

flags = frame-version %0.0 first-segnment |ast-segnment first-frame |ast-franme

frame-version = 2 BIT
first-segment = 1 BIT
| ast-segment = 1 BIT
first-frame = 1 BIT
last-frane = 1 BIT

type = 1 OCTET

size = uint1l6
track = 4 BIT

channel = 2 OCTET
frame-body = *OCTET

272

Protocol Grammar

Assemblies

assenbl y

control - segnent
command- segnent

he

se

ader - segnent
body- segnent

cl ass- code
control - code
conmand- code

ssi on- header

~

control - segnent
command- segnent [header - segnent] [body-segnent]

cl ass-code control -code argunents

cl ass- code command- code sessi on-header argunents
*struct32 ; further restricted by angp. xm

* OCTET

OCTET
OCTET
OCTET

ssn-hdr-flags ssn-hdr-fields

ssn-hdr-fl ags 2 OCTET ; packing flags for fields
ssn-hdr-fields * OCTET ; defined by session. header struct in angp.xni
argunments = *OCTET ; defined by angp. xni
Types
bi n8 = OCTET
int8 = OCTET
uint8 = OCTET
char = OCTET
bool ean = OCTET
binl6 = 2 OCTET
int16 = high-byte | ow byte
hi gh-byte = OCTET
| ow byte = OCTET
uint16 = high-byte | ow byte
hi gh-byte = OCTET
| ow byte = OCTET

273

Protocol Grammar

bi n32 = 4 OCTET
int32 = byte-four byte-three byte-two byte-one
byte-four = OCTET ; nost significant byte (NMSB)
byte-three = OCTET
byte-two = OCTET
byt e-one = OCTET ; |east significant byte (LSB)
uint32 = byte-four byte-three byte-two byte-one
byt e-four = OCTET ; nost significant byte (MSB)
byt e-three = OCTET
byte-two = OCTET
byt e-one = OCTET ; |east significant byte (LSB)
float = 4 OCTET ; |EEE 754 32-bit floating point number
char-utf32 = 4 OCTET ; single UTF-32 character
sequence-no = 4 OCTET ; RFC- 1982 serial nunber
bi n64 = 8 OCTET
int64 = byte-eight byte-seven byte-six byte-five
byt e-four byte-three byte-two byte-one
byt e-eight = 1 OCTET ; nost significant byte (MSB)
byt e-seven = 1 OCTET
byte-six = 1 OCTET
byte-five = 1 OCTET
byte-four = 1 OCTET
byte-three = 1 OCTET
byte-two = 1 OCTET
byte-one = 1 OCTET ; |east significant byte (LSB)
ui nt 64 = byte-eight byte-seven byte-six byte-five
byt e-four byte-three byte-two byte-one
byte-eight = 1 OCTET ; nost significant byte (MSB)
byt e-seven = 1 OCTET
byte-six = 1 OCTET
byte-five = 1 OCTET
byte-four = 1 OCTET
byte-three = 1 OCTET
byte-two = 1 OCTET
byte-one = 1 OCTET ; |east significant byte (LSB)
doubl e = 8 OCTET ; doubl e precision | EEE 754 floating poi nt nunber

274

Protocol Grammar

datetime = 8 OCTET ; 64 bit posix tinme_t format
bi n128 = 16 OCTET
uuid = 16 OCTET ; RFC 4122 section 4.1.2
bi n256 = 32 OCTET
bi n512 = 64 OCTET
bi n1024 = 128 OCTET
vbin8 = size octets
size = uint8
octets = 0*255 OCTET ; size OCTETs

str8-latin

size characters

size = uint8
characters = 0*255 OCTET ; size OCTETs
str8 = size utf8-unicode
size = uint8
ut f 8-uni code = 0*255 OCTET ; size OCTETs

str8-utfl6 = size utfl6-uni code
size = uint8
ut f 16-uni code = 0*255 OCTET ; size OCTETs
vbi n16 = size octets
size = uint16
octets = 0*65535 OCTET ; size OCTETs
strl6-latin = size characters
size = uint16

characters

0*65535 OCTET ;

size OCTETs

275

Protocol Grammar

strl6
si ze
ut f 8- uni code

si ze utf8-uni code

ui nt 16
0*65535 OCTET

y S

ize OCTETs

strl16-utfl16
si ze
ut f 16- uni code

si ze utf 16-uni code

ui nt 16
0*65535 OCTET

v S

i ze OCTETs

byt e-ranges
si ze
range
| ower
upper

si ze *range
ui nt 16
| ower upper
ui nt 64
ui nt 64

sequence- set

si ze *range

si ze ui nt 16 ; length of variable portion in bytes
range = | ower upper ; inclusive
| ower = sequence-no
upper = sequence- no
vbi n32 = size octets
size = uint32
octets = 0*4294967295 OCTET ; size OCTETs
map = size count *entry
size = uint32 ; size of count and entries in octets
count = uint32 ; nunber of entries in the map
entry = key type val ue
key = str8
type = OCTET ; type code of the val ue
val ue = *COCTET ; the encoded val ue
list = size count *item
size = uint32 ; size of count and itens in octets
count = uint32 ; nunber of itens in the |ist
item = type val ue
type = OCTET ; type code of the val ue
val ue = *COCTET ; the encoded val ue
array = size type count val ues
size = uint32 ; size of type, count, and values in octets
type = OCTET ; the type of the encoded val ues
count = uint32 ; nunmber of items in the array
val ues = 0*4294967290 OCTET ; (size - 5) OCTETs

276

Protocol Grammar

struct32 = size class-code struct-code packing-flags field-data
size = uint32
cl ass-code = OCTET ; zero for top-level structs
struct-code = OCTET ; together with class-code identifies the struct
; definition which determ nes the pack-wi dth and
; fields
packi ng-flags = 0*4 OCTET ; pack-w dth OCTETs
field-data = *OCTET ; (size - 2 - pack-wi dth) OCTETs
bi n40 = 5 OCTET
dec32 = exponent mantissa
exponent = uint8
manti ssa = int32
bi n64 = 9 OCTET
dec64 = exponent mantissa
exponent = uint8
manti ssa = int 64

277

Appendix A. Conformance Tests

A.l. Introduction

The AMQP conformance tests are designed to verify how far an AMQP server actually conformsto the specifications
laid out in this document. In principle, every "guideline for implementers’, or "RULE" in the protocol's XML
specification has a specific test that verifies whether the server conforms or not. In practice, some of the guidelines
areintended for clients, and some are not testable without excessive cost.

The protocol itself crossreferencestest by alogical label from within the protocol XML description, but the Test Sets
will be documented el sewhere as devel oped and ratified by the AMQ Protocol governing body.

Note that tests do not test performance, stability, or scalability. The scope of the conformance tests isto measure how
far an AMQP server is compatible with the protocol specifications, not how well it is built.

278

Appendix B. Implementation Guide

It istheintent of the authorsto include afull implementation guide in afuture release of the specification. The material
included here will form the starting point for the implementation guide.

B.1. AMQP Client Architecture

It is possible to read and write AMQP frames directly from an application but this would be bad design. Even the
simplest AMQP diaogue is rather more complex than, say HTTP, and application developers should not need to
understand such things as binary framing formatsin order to send a message to a message queue.

The recommended AM QP client architecture consists of severa layers of abstraction:

1. A framing layer. This layer takes AMQP protocol commands or controls, in some language-specific format
(structures, classes, etc.) and serializesthem aswire-level frames. Theframing layer can be mechanically generated
from the AMQP specification (which is defined in a protocol modelling language, implemented in XML and
specifically designed for AMQP).

2. A connection manager layer. Thislayer reads and writes AM QP frames and manages the overall connection and
session logic. In this layer we can encapsulate the full logic of opening a connection and session, error handling,
content transmission and reception, and so on. Large parts of this layer can be produced automatically from the
AMQP specifications. For instance, the specifications define which commands carry content, so the logic "send
command and then optionally send content” can be produced mechanically.

3. An API layer. This layer exposes a specific APl for applications to work with. The API layer may reflect some
existing standard, or may expose the high-level AMQP commands, making a mapping as described earlier in this
section. The AMQP commands are designed to make this mapping both simple and useful. The API layer may itself
be composed of severa layers, e.g. ahigher-level API constructed on top of the AMQP command API.

4. A transaction processing layer. This layer drives the application by delivering it transactions to process, where
the transactions are middleware messages. Using atransaction layer can be very powerful because the middieware
becomes entirely hidden, making applications easier to build, test, and maintain.

Additionally, thereisusually some kind of 1/O layer, which can be very simple (synchronous socket reads and writes)
or sophisticated (fully asynchronous multi-threaded i/0).

This diagram shows the overall recommended architecture (without layer 4, which is a different story):

e e e e e eeeeeeeeaaa +
Appl i cation
Femmmeeeaaa - Fommmmeeaaaa o +
I
e e e e e eeeeeeeeaaa +
+-- APl Layer ----Client APl Layer----- +
| Femmmeeeaaa - Fommmmeeaaaa o + |
I I I
| e e e e e eeeeeeeeaaa + Fom e e e e e e + |
| | Connecti on Manager +----+ Fram ng Layer | |
| Femmmeeeaaa - Fommmmeeaaaa o + Fom e e e e e e + |
I I I
| e e e e e eeeeeeeeaaa + |
+---| Asynchronous |/O Layer |------------------------- +
Femmmeeeaaa - Fommmmeeaaaa o +
I
- - - - Network - - - -

279

Implementation Guide

In this document, when we speak of the "client API", we mean all the layers below the application (i/o, framing,
connection manager, and APl layers. We will usually speak of "the client API" and "the application" as two separate
things, where the application uses the client API to talk to the middleware server.

280

	AMQP
	Table of Contents
	Credits
	1. Technical Contributors
	2. Reviewers

	Part I. Concepts
	1. Overview
	1.1. Goals of This Document
	1.2. Patents
	1.3. Summary
	1.3.1. What is AMQP?
	1.3.2. Why AMQP?
	1.3.3. Scope of AMQP
	1.3.4. The Advanced Message Queuing Protocol
	1.3.4.1. The AMQP Model
	1.3.4.2. The AMQP Protocol

	1.3.5. Functional Scope

	1.4. Organization of This Document
	1.5. Conventions
	1.5.1. Definitions
	1.5.2. Version Numbering
	1.5.3. Technical Terminology

	2. The AMQP Model
	2.1. Introduction to The AMQP Model
	2.1.1. The Message Queue
	2.1.2. The Exchange
	2.1.3. The Routing Key
	2.1.4. Analogy to Email
	2.1.5. Message Flow
	2.1.5.1. Message Life-cycle
	2.1.5.2. What The Producer Sees
	2.1.5.3. What The Consumer Sees
	2.1.5.4. Default Flow

	2.2. Virtual Hosts
	2.3. Exchanges
	2.3.1. Types of Exchange
	2.3.1.1. The Direct Exchange Type
	2.3.1.2. The Fanout Exchange Type
	2.3.1.3. The Topic Exchange Type
	2.3.1.4. The Headers Exchange Type
	2.3.1.5. The System Exchange Type
	2.3.1.6. Implementation-defined Exchange Types

	2.3.2. Exchange Life-cycle

	2.4. Message Queues
	2.4.1. Message Queue Properties
	2.4.2. Queue Life-cycles

	2.5. Bindings
	2.5.1. Constructing a Shared Queue
	2.5.2. Constructing a Reply Queue
	2.5.3. Constructing a Pub-Sub Subscription Queue

	2.6. Messages
	2.6.1. Flow Control
	2.6.2. Transfer of Responsibility

	2.7. Subscriptions
	2.8. Transactions
	2.9. Distributed Transactions
	2.9.1. Distributed Transaction Scenario

	3. Sessions
	3.1. Session Definition
	3.1.1. Session Lifetime
	3.1.2. A Transport For Commands
	3.1.3. Session as a Layer

	3.2. Session Functionality
	3.2.1. Sequential Identification
	3.2.2. Confirmation
	3.2.3. Completion
	3.2.4. Replay and Recovery

	3.3. Transport requirements
	3.4. Commands and Controls
	3.4.1. Commands
	3.4.1.1. The sync bit
	3.4.1.2. Results
	3.4.1.3. Exceptions

	3.4.2. Controls

	3.5. Session Lifecycle
	3.5.1. Attachment
	3.5.2. Session layer state
	3.5.3. Reliability
	3.5.4. Replay

	3.6. Using Session Controls
	3.6.1. Attaching to a "new" session
	3.6.2. Attempting to re-attach to an existing session
	3.6.3. Detaching cleanly
	3.6.4. Closing

	Part II. Specification
	4. Transport
	4.1. IANA Port Number
	4.2. Protocol Header
	4.3. Version Negotiation
	4.4. Framing
	4.4.1. Assemblies, Segments, and Frames
	4.4.2. Channels and Tracks
	4.4.3. Frame Format

	4.5. SCTP

	5. Formal Notation
	5.1. Docs and Rules
	5.2. Types
	5.3. Structs
	5.4. Domains
	5.4.1. Enums

	5.5. Constants
	5.6. Classes
	5.6.1. Roles

	5.7. Controls
	5.7.1. Responses

	5.8. Commands
	5.8.1. Results
	5.8.2. Exceptions

	5.9. Segments
	5.9.1. Header Segment
	5.9.2. Body Segment

	6. Constants
	7. Types
	Fixed width types
	Type: bin8
	Type: int8
	Type: uint8
	Type: char
	Type: boolean
	Type: bin16
	Type: int16
	Type: uint16
	Type: bin32
	Type: int32
	Type: uint32
	Type: float
	Type: char-utf32
	Type: sequence-no
	Type: bin64
	Type: int64
	Type: uint64
	Type: double
	Type: datetime
	Type: bin128
	Type: uuid
	Type: bin256
	Type: bin512
	Type: bin1024
	Type: bin40
	Type: dec32
	Type: bin72
	Type: dec64
	Type: void
	Type: bit

	Variable width types
	Type: vbin8
	Type: str8-latin
	Type: str8
	Type: str8-utf16
	Type: vbin16
	Type: str16-latin
	Type: str16
	Type: str16-utf16
	Type: byte-ranges
	Type: sequence-set
	Type: vbin32
	Type: map
	Type: list
	Type: array
	Type: struct32

	Mandatory Types

	8. Domains
	Domain: segment-type
	Domain: track
	Domain: str16-array

	9. Control Classes
	Class: connection
	Domain: connection.close-code
	Domain: connection.amqp-host-url
	Domain: connection.amqp-host-array
	Control: connection.start
	Arguments
	Rules
	Rule: protocol-name
	Rule: client-support
	Rule: required-fields
	Rule: required-support

	Control: connection.start-ok
	Arguments
	Rules
	Rule: required-fields
	Rule: security
	Rule: validity

	Control: connection.secure
	Arguments

	Control: connection.secure-ok
	Arguments

	Control: connection.tune
	Arguments
	Rules
	Rule: minimum
	Rule: permitted-range
	Rule: no-heartbeat-min

	Control: connection.tune-ok
	Arguments
	Rules
	Rule: upper-limit
	Rule: available-channels
	Rule: minimum
	Rule: upper-limit
	Rule: max-frame-size
	Rule: permitted-range
	Rule: no-heartbeat-min

	Control: connection.open
	Arguments
	Rules
	Rule: separation
	Rule: security
	Rule: behavior

	Control: connection.open-ok
	Arguments

	Control: connection.redirect
	Arguments
	Rules
	Rule: usage

	Control: connection.heartbeat
	Control: connection.close
	Arguments

	Control: connection.close-ok
	Rules
	Rule: reporting

	Class: session
	Rules
	Rule: attachment

	Domain: session.header
	Struct Type
	Fields

	Domain: session.command-fragment
	Struct Type
	Fields

	Domain: session.name
	Domain: session.detach-code
	Domain: session.commands
	Domain: session.command-fragments
	Control: session.attach
	Arguments
	Rules
	Rule: one-transport-per-session
	Rule: one-session-per-transport
	Rule: idempotence
	Rule: scoping

	Control: session.attached
	Arguments

	Control: session.detach
	Arguments

	Control: session.detached
	Arguments

	Control: session.request-timeout
	Arguments
	Rules
	Rule: maximum-granted-timeout

	Control: session.timeout
	Arguments

	Control: session.command-point
	Arguments
	Rules
	Rule: newly-attached-transports
	Rule: zero-offset
	Rule: nonzero-offset

	Control: session.expected
	Arguments
	Rules
	Rule: include-next-command
	Rule: commands-empty-means-new-session
	Rule: no-overlaps
	Rule: minimal-fragments

	Control: session.confirmed
	Arguments
	Rules
	Rule: durability
	Rule: no-overlaps
	Rule: minimal-fragments
	Rule: exclude-known-complete

	Control: session.completed
	Arguments
	Rules
	Rule: known-completed-reply
	Rule: delayed-reply
	Rule: merged-reply
	Rule: completed-implies-confirmed
	Rule: exclude-known-complete

	Control: session.known-completed
	Arguments
	Rules
	Rule: stateless
	Rule: known-completed-implies-known-confirmed

	Control: session.flush
	Arguments

	Control: session.gap
	Arguments
	Rules
	Rule: gap-confirmation-and-completion
	Rule: aborted-commands
	Rule: completed-or-confirmed-commands

	10. Command Classes
	Class: execution
	Domain: execution.error-code
	Command: execution.sync
	Command: execution.result
	Arguments

	Command: execution.exception
	Arguments

	Class: message
	Rules
	Rule: persistent-message
	Rule: no-persistent-message-discard
	Rule: throttling
	Rule: non-persistent-message-overflow
	Rule: non-persistent-message-discard
	Rule: min-priority-levels
	Rule: priority-level-implementation
	Rule: priority-delivery

	Domain: message.delivery-properties
	Struct Type
	Fields
	Rules
	Rule: implementation
	Rule: hinting
	Rule: ttl-decrement

	Domain: message.fragment-properties
	Struct Type
	Fields

	Domain: message.reply-to
	Struct Type
	Fields

	Domain: message.message-properties
	Struct Type
	Fields
	Rules
	Rule: unique
	Rule: immutable
	Rule: authentication

	Domain: message.destination
	Domain: message.accept-mode
	Domain: message.acquire-mode
	Domain: message.reject-code
	Domain: message.resume-id
	Domain: message.delivery-mode
	Domain: message.delivery-priority
	Domain: message.flow-mode
	Domain: message.credit-unit
	Command: message.transfer
	Arguments
	Segments
	header
	body

	Rules
	Rule: transactional-publish
	Rule: blank-destination

	Exceptions
	Exception: nonexistent-exchange

	Command: message.accept
	Arguments
	Rules
	Rule: acquisition

	Command: message.reject
	Arguments
	Rules
	Rule: alternate-exchange
	Rule: acquisition

	Command: message.release
	Arguments
	Rules
	Rule: ordering

	Command: message.acquire
	Arguments
	Rules
	Rule: one-to-one

	Result
	Struct Type
	Fields

	Command: message.resume
	Arguments
	Rules
	Rule: unknown-resume-id

	Exceptions
	Exception: destination-not-found

	Result
	Struct Type
	Fields

	Command: message.subscribe
	Arguments
	Rules
	Rule: simultaneous-subscriptions
	Rule: default-flow-mode
	Rule: initial-credit

	Exceptions
	Exception: queue-deletion
	Exception: queue-not-found
	Exception: unique-subscriber-destination
	Exception: in-use

	Command: message.cancel
	Arguments
	Rules
	Rule: post-cancel-transfer-resolution

	Exceptions
	Exception: subscription-not-found

	Command: message.set-flow-mode
	Arguments
	Rules
	Rule: byte-accounting
	Rule: mode-switching
	Rule: default-flow-mode

	Command: message.flow
	Arguments

	Command: message.flush
	Arguments

	Command: message.stop
	Arguments

	Class: tx
	Rules
	Rule: duplicate-tracking

	Command: tx.select
	Exceptions
	Exception: exactly-once
	Exception: no-dtx
	Exception: explicit-accepts

	Command: tx.commit
	Exceptions
	Exception: select-required

	Command: tx.rollback
	Exceptions
	Exception: select-required

	Class: dtx
	Rules
	Rule: transactionality

	Domain: dtx.xa-result
	Struct Type
	Fields

	Domain: dtx.xid
	Struct Type
	Fields

	Domain: dtx.xa-status
	Command: dtx.select
	Command: dtx.start
	Arguments
	Exceptions
	Exception: illegal-state
	Exception: already-known
	Exception: join-and-resume
	Exception: unknown-xid
	Exception: unsupported

	Result

	Command: dtx.end
	Arguments
	Rules
	Rule: success
	Rule: session-closed
	Rule: failure
	Rule: resume

	Exceptions
	Exception: illegal-state
	Exception: suspend-and-fail
	Exception: not-associated

	Result

	Command: dtx.commit
	Arguments
	Exceptions
	Exception: illegal-state
	Exception: unknown-xid
	Exception: not-disassociated
	Exception: one-phase
	Exception: two-phase

	Result

	Command: dtx.forget
	Arguments
	Exceptions
	Exception: illegal-state
	Exception: unknown-xid
	Exception: not-disassociated

	Command: dtx.get-timeout
	Arguments
	Exceptions
	Exception: unknown-xid

	Result
	Struct Type
	Fields

	Command: dtx.prepare
	Arguments
	Rules
	Rule: obligation-1
	Rule: obligation-2

	Exceptions
	Exception: illegal-state
	Exception: unknown-xid
	Exception: not-disassociated

	Result

	Command: dtx.recover
	Result
	Struct Type
	Fields

	Command: dtx.rollback
	Arguments
	Exceptions
	Exception: illegal-state
	Exception: unknown-xid
	Exception: not-disassociated

	Result

	Command: dtx.set-timeout
	Arguments
	Rules
	Rule: effective
	Rule: reset

	Exceptions
	Exception: unknown-xid

	Class: exchange
	Rules
	Rule: required-types
	Rule: recommended-types
	Rule: required-instances
	Rule: default-exchange
	Rule: default-access
	Rule: extensions

	Domain: exchange.name
	Command: exchange.declare
	Arguments
	Rules
	Rule: minimum
	Rule: empty-name
	Rule: double-failure
	Rule: support
	Rule: sticky
	Rule: sticky

	Exceptions
	Exception: reserved-names
	Exception: exchange-name-required
	Exception: typed
	Exception: exchange-type-not-found
	Exception: pre-existing-exchange
	Exception: not-found
	Exception: unknown-argument

	Command: exchange.delete
	Arguments
	Exceptions
	Exception: exists
	Exception: exchange-name-required
	Exception: used-as-alternate
	Exception: exchange-in-use

	Command: exchange.query
	Arguments
	Result
	Struct Type
	Fields

	Command: exchange.bind
	Arguments
	Rules
	Rule: duplicates
	Rule: durable-exchange
	Rule: binding-count
	Rule: multiple-bindings

	Exceptions
	Exception: empty-queue
	Exception: queue-existence
	Exception: exchange-existence
	Exception: exchange-name-required
	Exception: unknown-argument

	Command: exchange.unbind
	Arguments
	Exceptions
	Exception: non-existent-queue
	Exception: non-existent-exchange
	Exception: exchange-name-required
	Exception: non-existent-binding-key

	Command: exchange.bound
	Arguments
	Result
	Struct Type
	Fields

	Class: queue
	Rules
	Rule: any-content

	Domain: queue.name
	Command: queue.declare
	Arguments
	Rules
	Rule: default-binding
	Rule: minimum-queues
	Rule: persistence
	Rule: types
	Rule: pre-existence
	Rule: types
	Rule: pre-existence

	Exceptions
	Exception: reserved-prefix
	Exception: pre-existing-exchange
	Exception: unknown-exchange
	Exception: passive
	Exception: in-use
	Exception: unknown-argument

	Command: queue.delete
	Arguments
	Exceptions
	Exception: empty-name
	Exception: queue-exists
	Exception: if-unused-flag
	Exception: not-empty

	Command: queue.purge
	Arguments
	Rules
	Rule: empty
	Rule: pending-messages
	Rule: purge-recovery

	Exceptions
	Exception: empty-name
	Exception: queue-exists

	Command: queue.query
	Arguments
	Result
	Struct Type
	Fields

	Class: file
	Rules
	Rule: reliable-storage
	Rule: no-discard
	Rule: priority-levels
	Rule: acknowledgement-support

	Domain: file.file-properties
	Struct Type
	Fields

	Domain: file.return-code
	Command: file.qos
	Arguments
	Rules
	Rule: prefetch-discretion

	Command: file.qos-ok
	Command: file.consume
	Arguments
	Rules
	Rule: min-consumers

	Exceptions
	Exception: queue-exists-if-empty
	Exception: not-existing-consumer
	Exception: not-empty-consumer-tag
	Exception: in-use

	Command: file.consume-ok
	Arguments

	Command: file.cancel
	Arguments

	Command: file.open
	Arguments
	Rules
	Rule: content-size

	Command: file.open-ok
	Arguments
	Rules
	Rule: behavior
	Rule: staging

	Command: file.stage
	Segments
	header
	body

	Command: file.publish
	Arguments
	Rules
	Rule: default
	Rule: implementation
	Rule: implementation

	Exceptions
	Exception: refusal

	Command: file.return
	Arguments
	Segments
	header
	body

	Command: file.deliver
	Arguments
	Rules
	Rule: redelivery-tracking
	Rule: non-zero

	Command: file.ack
	Arguments
	Rules
	Rule: session-local
	Rule: validation

	Command: file.reject
	Arguments
	Rules
	Rule: server-interpretation
	Rule: not-selection
	Rule: session-local
	Rule: requeue-strategy

	Class: stream
	Rules
	Rule: overflow-discard
	Rule: priority-levels
	Rule: acknowledgement-support

	Domain: stream.stream-properties
	Struct Type
	Fields

	Domain: stream.return-code
	Command: stream.qos
	Arguments
	Rules
	Rule: ignore-prefetch
	Rule: drop-by-priority

	Command: stream.qos-ok
	Command: stream.consume
	Arguments
	Rules
	Rule: min-consumers
	Rule: priority-based-delivery

	Exceptions
	Exception: queue-exists-if-empty
	Exception: not-existing-consumer
	Exception: not-empty-consumer-tag
	Exception: in-use

	Command: stream.consume-ok
	Arguments

	Command: stream.cancel
	Arguments

	Command: stream.publish
	Arguments
	Segments
	header
	body

	Rules
	Rule: default
	Rule: implementation
	Rule: implementation

	Exceptions
	Exception: refusal

	Command: stream.return
	Arguments
	Segments
	header
	body

	Command: stream.deliver
	Arguments
	Segments
	header
	body

	Rules
	Rule: session-local

	11. The Model
	11.1. Exchanges
	11.1.1. Mandatory Exchange Types
	11.1.1.1. Direct Exchanges
	Rule: exchange_type_direct
	Rule: exchange_type_direct_binding
	Rule: default_exchange
	Rule: amq_direct_exchange

	11.1.1.2. Fanout Exchanges
	Rule: exchange_type_fanout
	Rule: exchange_type_fanout_binding
	Rule: amq_fanout_exchange

	11.1.2. Optional Exchange Types
	11.1.2.1. Headers Exchanges
	Rule: exchange_type_headers
	Rule: headers_exchange_requires_match_arg
	Rule: headers_exchange_requires_match_all
	Rule: headers_exchange_requires_match_any
	Rule: amq_match_exchange

	11.1.2.2. Topic Exchanges
	Rule: exchange_type_topic
	Rule: exchange_type_topic_binding
	Rule: amq_topic_exchange

	11.1.2.3. Failover Exchanges
	Rule: exchange_type_failover
	Rule: amq_failover_exchange
	Rule: only_one_failover_exchange
	Rule: failover_exchange_allow_private_queues
	Rule: failover_exchange_disallow_shared_queues
	Rule: failover_exchange_behavior
	Rule: failover_exchange_messages
	Rule: failover_exchange_message_url_ordering
	Rule: failover_exchange_message_differences
	Rule: failover_exchange_spontaneous_disconnect
	Rule: failover_exchange_usage

	11.1.3. System Exchanges
	Rule: exchange_type_system
	Rule: system_exchange_behavior
	Rule: system_exchange_binding_forbidden

	11.1.4. Implementation-defined Exchange Types
	Rule: exchange_type_naming

	11.1.5. Exchange Naming
	Rule: exchange_naming

	11.2. Queues
	Rule: queue_naming

	12. Protocol Grammar
	12.1. Augmented BNF Rules
	12.2. Grammar

	Appendix A. Conformance Tests
	A.1. Introduction

	Appendix B. Implementation Guide
	B.1. AMQP Client Architecture

